Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 148: 109494, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499217

RESUMO

Vibrio harveyi poses a significant threat to fish and invertebrates in mariculture, resulting in substantial financial repercussions for the aquaculture sector. Valine-glycine repeat protein G (VgrG) is essential for the type VI secretion system's (T6SS) assembly and secretion. VgrG from V. harveyi QT520 was cloned and analyzed in this study. The localization of VgrG was determined by Western blot, which revealed that it was located in the cytoplasm, secreted extracellularly, and attached to the membrane. The effectiveness of two vaccinations against V. harveyi infection-a subunit vaccine (rVgrG) and a DNA vaccine (pCNVgrG) prepared with VgrG was evaluated. The findings indicated that both vaccines provided a degree of protection against V. harveyi challenge. At 4 weeks post-vaccination (p.v.), the rVgrG and pCNVgrG exhibited relative percent survival rates (RPS) of 71.43% and 76.19%, respectively. At 8 weeks p.v., the RPS for rVgrG and pCNVgrG were 68.21% and 72.71%, respectively. While both rVgrG and pCNVgrG elicited serum antibody production, the subunit vaccinated fish demonstrated significantly higher levels of serum anti-VgrG specific antibodies than the DNA vaccine group. The result of qRT-PCR demonstrated that the expression of major histocompatibility complex (MHC) class Iα, tumor necrosis factor-alpha (TNF-α), interferon γ (IFNγ), and cluster of differentiation 4 (CD4) were up-regulated by both rVgrG and pCNVgrG. Fish vaccinated with rVgrG and pCNVgrG exhibited increased activity of acid phosphatase, alkaline phosphatase, superoxide dismutase, and lysozyme. These findings suggest that VgrG from V. harveyi holds potential for application in vaccination.


Assuntos
Doenças dos Peixes , Vacinas de DNA , Vibrioses , Vibrio , Animais , Vibrioses/prevenção & controle , Vibrioses/veterinária , Valina , Vacinas Bacterianas , Peixes , Doenças dos Peixes/prevenção & controle
2.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298202

RESUMO

Hepcidin, a cysteine-rich antimicrobial peptide, has a highly conserved gene structure in teleosts, and it plays an essential role in host immune response against various pathogenic bacteria. Nonetheless, few studies on the antibacterial mechanism of hepcidin in golden pompano (Trachinotus ovatus) have been reported. In this study, we synthesized a derived peptide, TroHepc2-22, from the mature peptide of T. ovatus hepcidin2. Our results showed that TroHepc2-22 has superior antibacterial abilities against both Gram-negative (Vibrio harveyi and Edwardsiella piscicida) and Gram-positive (Staphylococcus aureus and Streptococcus agalactiae) bacteria. Based on the results of a bacterial membrane depolarization assay and propidium iodide (PI) staining assay in vitro, TroHepc2-22 displayed antimicrobial activity by inducing the bacterial membrane depolarization and changing the bacterial membrane permeability. Scanning electron microscopy (SEM) visualization illustrated that TroHepc2-22 brought about membrane rupturing and the leakage of the cytoplasm for the bacteria. In addition, TroHepc2-22 was verified to have hydrolytic activity on bacterial genomic DNA in view of the results of the gel retardation assay. In terms of the in vivo assay, the bacterial loads of V. harveyi in the tested immune tissues (liver, spleen, and head kidney) were significantly reduced in T. ovatus, revealing that TroHepc2-22 significantly enhanced the resistance against V. harveyi infection. Furthermore, the expressions of immune-related genes, including tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin 1-ß (IL-1ß), IL-6, Toll-like receptor 1 (TLR1), and myeloid differentiation factor 88 (MyD88) were significantly increased, indicating that TroHepc2-22 might regulate inflammatory cytokines and activate immune-related signaling pathways. To summarize, TroHepc2-22 possesses appreciable antimicrobial activity and plays a vital role in resisting bacterial infection. The observation of our present study unveils the excellent application prospect of hepcidin as a substitute for antibiotics to resist pathogenic microorganisms in teleosts.


Assuntos
Anti-Infecciosos , Doenças dos Peixes , Perciformes , Vibrioses , Animais , Hepcidinas/genética , Hepcidinas/farmacologia , Imunidade Inata/genética , Perciformes/genética , Peixes/metabolismo , Peptídeos , Proteínas de Peixes/genética , Proteínas de Peixes/farmacologia , Proteínas de Peixes/química
3.
Fish Shellfish Immunol ; 138: 108839, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37207883

RESUMO

Cromileptes altivelis (humpback grouper) is the main farmed species in the southern coastal area of China owing to its important economic value. Toll-like receptor 9 (TLR9) belongs to the toll-like receptor (TLR) family and functions as a pattern recognition receptor, recognising unmethylated oligodeoxynucleotides containing the CpG motif (CpG ODNs) in bacterial and viral genomes, thereby activating host immune response. In this study, the C. altivelis TLR9 (CaTLR9) ligand CpG ODN 1668 was screened and found to significantly enhance the antibacterial immunity of humpback grouper in vivo and head kidney lymphocytes (HKLs) in vitro. In addition, CpG ODN 1668 also promoted the cell proliferation and immune gene expression of HKLs and strengthened the phagocytosis activity of head kidney macrophages. However, when the CaTLR9 expression was knocked down in the humpback group, the expression levels of TLR9, myeloid differentiation factor 88 (Myd88), tumour necrosis factor-α (TNF-α), interferon γ (IFN-γ), interleukin-1ß (IL-1ß), IL-6, and IL-8 were significantly reduced, and the antibacterial immune effects induced by CpG ODN 1668 were mostly abolished. Therefore, CpG ODN 1668 induced antibacterial immune responses in a CaTLR9-dependent pathway. These results enhance the knowledge of the antibacterial immunity of fish TLR signalling pathways and have important implications for exploring natural antibacterial molecules in fish.


Assuntos
Bass , Receptor Toll-Like 9 , Animais , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Bass/genética , Bass/metabolismo , Adjuvantes Imunológicos/farmacologia , Oligodesoxirribonucleotídeos/farmacologia , Imunidade
4.
Fish Shellfish Immunol ; 137: 108783, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37137380

RESUMO

CpG oligodeoxynucleotides (ODNs) are oligodeoxynucleotides containing CpG motifs and can be recognized by toll-like receptor 9 (TLR9), activating the host's immune responses. In this study, ten different CpG ODNs were designed and synthesized to study the antibacterial immune responses of CpG ODNs in golden pompano (Trachinotus ovatus). Results showed that CpG ODN 2102 significantly improved the immunity of golden pompano against bacteria. Besides, CpG ODN 2102 promoted the proliferation of head kidney lymphocytes and activated the head kidney macrophages. When TLR9-specific small interfering RNA (siRNA) was used to interfere with TLR9 expression, the immune responses were decreased. Moreover, the expression levels of myeloid differentiation primary response 88 (Myd88), p65, tumor necrosis factor receptor-associated factor 6 (TRAF6), and tumor necrosis factor-alpha (TNF-α) in the TLR9-knockdown golden pompano kidney (GPK) cells were significantly reduced. The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) promoter activity of the TLR9-knockdown GPK cells was also significantly reduced. In vivo, the antibacterial immune effects induced by CpG ODN 2102 in golden pompano were mostly abolished when TLR9 expression was knocked down. These results suggested that TLR9 was involved in the immune responses induced by CpG ODN 2102. CpG ODN 2102 also enhanced the protective effect of the Vibrio harveyi vaccine pCTssJ, where the survival rate of golden pompano was significantly improved by 20%. In addition, CpG ODN 2102 enhanced the messenger RNA (mRNA) expression levels of TLR9, Myxovirus resistance (Mx), interferon γ (IFN-γ), TNF-α, interleukin (IL)-1ß, IL-8, major histocompatibility complex class (MHC) Iα, MHC IIα, Immunoglobulin D (IgD), and IgM. Therefore, TLR9 was involved in the antibacterial immune responses induced by CpG ODN 2102 and CpG ODN 2102 possessed adjuvant immune effects. These results enlarged our knowledge of the antibacterial immunity of fish TLRs signaling pathway and had important implications for exploring natural antibacterial molecules in fish and developing new vaccine adjuvants.


Assuntos
Receptor Toll-Like 9 , Vacinas , Animais , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Fator de Necrose Tumoral alfa , Peixes , Oligodesoxirribonucleotídeos/farmacologia , Imunidade
5.
Front Immunol ; 14: 1129800, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006242

RESUMO

Introduction: B-cell lymphoma-2 (Bcl-2) is the first identified member of the Bcl-2 family that performs an anti-apoptotic function in mammals. However, its role in teleosts is not fully understood. In this study, Bcl-2 of Trachinotus ovatus (TroBcl2) was cloned, and its role in apoptosis was investigated. Methods: In this study, Bcl-2 of Trachinotus ovatus (TroBcl2) was cloned by PCR. Quantitative real-time PCR (qRT-PCR) was used to detect its mRNA expression level in healthy condition and after LPS stimulation. Subcellular localization was performed by transfecting the pTroBcl2-N3 plasmid into golden pompano snout (GPS) cells and observed under an inverted fluorescence microscope DMi8 and further verified by immunoblotting. In vivo overexpression and RNAi knockdown method were performed to evaluate the role of TroBcl2 in apoptosis. The anti-apoptotic activity of TroBcl2 was detected by flow cytometry. The effect of TroBcl2 on the mitochondrial membrane potential (MMP) was measured by an enhanced mitochondrial membrane potential assay kit with JC-1. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method was performed to evaluate the role of TroBcl2 in the DNA fragmentation. Immunoblotting was used to verify whether TroBcl2 inhibits the release of cytochrome c from mitochondria into the cytoplasm. The Caspase 3 and Caspase 9 Activity Assay Kits were used to investigate the effect of TroBcl2 on caspase 3 and caspase 9 activities. The effects of TroBcl2 on the expression of apoptosis-related and nuclear factor- κB (NF-κB) signaling pathway-related genes in vitro were evaluated by qRT-PCR and Enzyme linked immunosorbent assay (ELISA). Luciferase reporter assay was used to evaluate the activity in NF-κB signaling pathway. Results and discussion: The full-length coding sequence of TroBcl2 contains 687 bp and encodes a protein containing 228 amino acids. Four conserved Bcl-2 homology (BH) domains and one invariant "NWGR" motif located in BH1 were identified in TroBcl2. In healthy T. ovatus, TroBcl2 was widely distributed in the eleven tested tissues, and higher expression levels were found in immune-related tissues, such as spleen and head kidney tissues. After stimulation with lipopolysaccharide (LPS), the expression of TroBcl2 in the head kidney, spleen, and liver was significantly upregulated. In addition, subcellular localization analysis revealed that TroBcl2 was localized in both the cytoplasm and nucleus. Functional experiments showed that TroBcl2 inhibited apoptosis, possibly by reducing mitochondrial membrane potential loss, decreasing DNA fragmentation, preventing cytochrome c release into cytoplasm, and reducing the caspase 3 and caspase 9 activations. Moreover, upon LPS stimulation, overexpression of TroBcl2 suppressed the activation of several apoptosis-related genes, such as BOK, caspase-9, caspase-7, caspase-3, cytochrome c, and p53. Furthermore, knockdown of TroBcl2 significantly increased the expression of those apoptosis-related genes. In addition, TroBcl2 overexpression or knockdown induced or inhibited, respectively, the transcription of NF-κB and regulated the expression of genes (such as NF-κB1 and c-Rel) in the NF-κB signaling pathway as well as the expression of the downstream inflammatory cytokine IL-1ß. Overall, our study suggested that TroBcl2 performs its conserved anti-apoptotic function via the mitochondrial pathway and may serve as an anti-apoptotic regulator in T. ovatus.


Assuntos
Citocromos c , NF-kappa B , Animais , NF-kappa B/metabolismo , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Citocromos c/metabolismo , Lipopolissacarídeos/farmacologia , Apoptose , Peixes/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Mamíferos/metabolismo
6.
Fish Shellfish Immunol ; 132: 108484, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36516955

RESUMO

Tumor necrosis factor ligand superfamily member 6 (TNFSF6), also known as FasL/CD95L, is essential for maintaining the body's immune homeostasis. However, the current reports on TNFSF6 in fish are relatively scarce. In the present study, we conducted functional analyses of a TNFSF6 (TroTNFSF6) from the teleost fish golden pompano (Trachinotus ovatus). TroTNFSF6 is composed of 228 amino acids and has a low similarity with other species (9.65%-58.79%). TroTNFSF6 was expressed in the 11 tissues tested and was significantly up-regulated after Edwardsiella tarda infection. In vivo, overexpression of TroTNFSF6 effectively stimulated the AKP and ACP activities, and reduced bacterial infection in fish tissues. Correspondingly, knockdown of TroTNFSF6 expression resulted in increasing bacterial dissemination and colonization in fish tissues. In vitro, recombinant TroTNFSF6 protein promoted the proliferation of T. ovatus head kidney lymphocytes (HKLs), and promoted the apoptosis of murine liver cancer cells (Hepa1-6). The results indicated that TroTNFSF6 plays an important role in the T. ovatus antibacterial immunity. These observations will facilitate the future in-depth study of teleost TNFSF6.


Assuntos
Doenças dos Peixes , Imunidade Inata , Perciformes , Animais , Camundongos , Proteínas de Peixes , Peixes , Imunidade Inata/genética , Ligantes , Proteínas Recombinantes , Fator de Necrose Tumoral alfa
7.
Fish Shellfish Immunol ; 128: 316-326, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35952999

RESUMO

Cathepsins, as a class of protein hydrolases, are widely found in the lysosomes of many tissues and play an essential role in various physiological activities. Cathepsin C (CTSC), a lysosomal cysteine protease, is an essential component of the lysosomal hydrolase family. In this study, we identified a CTSC from Trachinotus ovatus (TroCTSC) and analyzed its function. TroCTSC contained an ORF of 1368 bp and encoded 455 amino acids, which included three conserved catalytically active sites (Cys251, His397, and Asn419). It shares high homology (69.47%-90.77%) with the other known CTSC sequences of teleosts, which was most closely related to Seriola dumerili. TroCTSC was most abundant in the muscle, liver, and head kidney. After Vibrio harveyi infection, the expression levels of TroCTSC in liver, spleen, and head kidney were significantly up-regulated. TroCTSC was found in the cytoplasm with some of which were co-located with the lysosome. After V. harveyi stimulation, TroCTSC was translocated to nucleus in golden pompano snout (GPS) cells. In vitro, results revealed that the optimal hydrolase activity of the recombinant protein, rTroCTSC, was at 40 °C and pH 5.5. The activity of rTroCTSC was promoted by Zn2+ and Ca2+ but inhibited by Fe2+ and Cu2+. However, three mutant proteins, rTroCTSC-C251A, rTroCTSC-H397A, rTroCTSC-N419A, were dramatically reduced the proteolytic activity. Furthermore, in vivo results showed that overexpression of TroCTSC could significantly enhance body's ability to resist V. harveyi and promote the expression of proinflammatory cytokines, including interleukin 1-beta (IL-1ß), IL-6, IL-8, interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α). In contrast, the interference of TroCTSC expression induced a significant increase in the number of bacteria after V. harveyi infection. Our results suggested that TroCTSC was an essential effector of the innate immune system and played a pivotal role in antibacterial immunity.


Assuntos
Doenças dos Peixes , Vibrioses , Aminoácidos , Animais , Antibacterianos , Catepsina C , Proteínas de Peixes , Peixes , Imunidade Inata/genética , Interferon gama , Interleucina-6 , Interleucina-8 , Proteínas Mutantes , Proteínas Recombinantes , Fator de Necrose Tumoral alfa
8.
Dev Comp Immunol ; 133: 104445, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35588935

RESUMO

Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine with a unique structure involved in immune regulation and inflammation. In the present study, we identified a MIF from Trachinotus ovatus (golden pompano) and analyzed its function. TroMIF shares high homology (58.26%-94.78%) with the other known MIF sequences of vertebrates. TroMIF is most closely related to large yellow croaker (Larimichthys crocea). The expression of TroMIF was most abundant in the liver and head kidney, and was significantly up-regulated after Edwardsiella tarda infection. The subcellular localization of TroMIF was mostly distributed in the cytoplasm. In vitro results revealed that the recombinant protein rTroMIF could inhibit the migration of head kidney lymphocytes (HKLs) and macrophages (HKMs) and enhance the phagocytic activity of HKMs. As a pro-inflammatory cytokine, rTroMIF could increase the expression levels of some pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin 1-beta (IL-1ß), IL-6, IL-8, and interferon-gamma (IFN-γ) and decrease the expression of IL-10. The rTroMIF was proved to have enzymatic redox activity in vitro. Furthermore, overexpression of TroMIF in the head kidney cell line of golden pompano could significantly enhance its ability to resist E. tarda infection from 1 h to 4 h. The knockdown of TroMIF expression induced a significant increase in the number of bacteria after E. tarda infection at 1, 2, and 4 hpi. Our results suggest that TroMIF is an essential effector of the innate immune system and plays a pivotal role in antibacterial immunity.


Assuntos
Doenças dos Peixes , Fatores Inibidores da Migração de Macrófagos , Perciformes , Animais , Antibacterianos , Proteínas de Peixes , Peixes , Imunidade Inata , Fatores Inibidores da Migração de Macrófagos/genética , Perciformes/metabolismo
9.
Fish Shellfish Immunol ; 123: 102-112, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35240293

RESUMO

Chemokines are a family of small signaling proteins that are secreted by various cells. In addition to their roles in immune surveillance, localization of antigen, and lymphocyte trafficking for the maintenance of homeostasis, chemokines also function in induce immune cell migration under pathological conditions. In the present study, a novel CC chemokine gene (CaCC1) from humpback grouper (Cromileptes altivelis) was cloned and characterized. CaCC1 comprised a 435 bp open reading frame encoding 144 amino acid residues. The putative molecular weight of CaCC1 protein was 15 kDa CaCC1 contains four characteristic cysteines that are conserved in other known CC chemokines. CaCC1 also shares 11.64%-90.28% identity with other teleost and mammal CC chemokines. Phylogenetic analysis revealed that CaCC1 is most closely related to Epinephelus coioides EcCC1, both of which are in a fish-specific CC chemokine clade. CaCC1 was constitutively expressed in all examined C. altivelis tissues, with high expression levels in skin, heart, liver, and intestine. Vibrio harveyi stimulation up-regulated CaCC1 expression levels in liver, spleen, and head-kidney. Functional analyses revealed that the recombinant protein (rCaCC1) could induce the migration of head-kidney lymphocytes from C. altivelis. Moreover, rCaCC1 significantly enhanced phagocytosis in head-kidney macrophages from C. altivelis. In addition, rCaCC1 exhibited antimicrobial activities against Staphylococcus aureus, Edwardsiella tarda, and V. harveyi. In vivo, CaCC1 overexpression improved bacterial clearance in V. harveyi infected fish. Conversely, CaCC1 knockdown resulted in a significant decrease of bacterial clearance. These results demonstrate the important roles that CaCC1 plays in homeostasis and in inflammatory response to bacterial infection.


Assuntos
Anti-Infecciosos , Bass , Doenças dos Peixes , Animais , Quimiocinas/genética , Quimiocinas CC/genética , Proteínas de Peixes/química , Regulação da Expressão Gênica , Mamíferos/metabolismo , Filogenia
10.
Dev Comp Immunol ; 123: 104128, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34081945

RESUMO

Cathepsin B (CTSB) is one of the typical representatives of cysteine protease family. It has the activity of both exopeptidase and endopeptidase. It plays an important role in antigen presentation, degradation, apoptosis, inflammatory response and physiological process of many diseases. In this study, CTSB of Trachinotus ovatus (TroCTSB) was cloned, and its structure and function were analyzed. The results showed that the coding region of TroCTSB was 993 bp, encoding 330 amino acid residues. The homology analysis showed that the amino acid sequence of TroCTSB was similar to that in other teleosts and mammals (68.69%-88.48%). Under normal physiological conditions, TroCTSB was widely distributed in various tissues with the highest expression level in stomach, followed by liver, and the lowest expression level in blood. The optimal pH and temperature of purified recombinant protein rTroCTSB were 5.5 and 40 °C, respectively. The toxicity test of metal ions showed that Fe2+, Cu2+, Ca2+ and Zn2+ could all inhibit the activity of TroCTSB, with Zn2+ ranking the first. In addition, after Edwardsiella tarda infection, the expression of TroCTSB was significantly up-regulated in liver, spleen and head kidney. The overexpression of TroCTSB significantly inhibited the infection of E. tarda in golden pompano tissues, and the knockdown of TroCTSB remarkably promoted the reproduction of E. tarda in golden pompano tissues in vivo. This study suggests that TroCTSB was involved in the antibacterial immune response of T. ovatus, and provided a reference for further research in elucidating the resistance mechanism of TroCTSB.


Assuntos
Catepsina B/metabolismo , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/imunologia , Proteínas de Peixes/metabolismo , Peixes/imunologia , Estômago/fisiologia , Animais , Animais Geneticamente Modificados , Catepsina B/genética , Clonagem Molecular , Proteínas de Peixes/genética , Técnicas de Silenciamento de Genes , Imunidade Inata , Alinhamento de Sequência , Transcriptoma , Regulação para Cima , Zinco/metabolismo
11.
Fish Shellfish Immunol ; 106: 833-843, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32891790

RESUMO

Liver-expressed antimicrobial peptide-2 (LEAP-2) is a member of the antimicrobial peptides family. Research has demonstrated that LEAP-2 contains a number of cations and plays a key role in the innate immune system of organism. In this study, we cloned and identified TroLEAP-2, from the golden pompano (Trachinotus ovatus), and analyzed its functions in vivo and in vitro. Results showed that TroLEAP-2 contains a 321 bp open reading frame (ORF) that encodes 106 putative amino acids with a molecular weight of 11.65 kDa. The mature TroLEAP-2 peptide possesses four conserved cysteine residues, which can form a core structure with two disulfide bonds between the cysteine residues in the relative 1-3 (Cys 77 and Cys 88) and 2-4 (Cys 83 and Cys 93) positions. It has a high amino acid sequence similarity (38.68%-83.02%) with the liver-expressed antimicrobial peptide -2 of other teleosts. Phylogenetic analysis showed that TroLEAP-2 clustered with the LEAP-2 of Paralichthys olivaceus and Miichthy milluy. TroLEAP-2 was most abundantly expressed in the liver, spleen, and kidney, and was significantly upregulated during Edwardsiella tarda and Streptococcus agalactiae infection. Purified recombinant TroLEAP-2 (rTroLEAP-2) could significantly inhibit the in vitro growth of E. tarda and S. agalactiae. Overexpression of TroLEAP-2 in vivo was shown to significantly reduce E. tarda and S. agalactiae colonization of tissues, whereas its knockdown resulted in an increase of bacteria in fish tissues. We also saw that TroLEAP-2 overexpression significantly improved macrophage activation in vivo. Moreover, TroLEAP-2 can induce the expression of nonspecific immune-related genes. These results showed that it might play a significant role in the innate immune system of golden pompano. In conclusion, our results indicate that TroLEAP-2 plays an important role in antibacterial immunity and provides a new avenue for protection against pathogenic infections in golden pompano.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Proteínas de Peixes/imunologia , Peixes/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Edwardsiella tarda , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Peixes/genética , Peixes/microbiologia , Imunidade Inata/genética , Rim/imunologia , Fígado/imunologia , Baço/imunologia , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae
12.
Fish Shellfish Immunol ; 103: 47-57, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32278114

RESUMO

Insulin-like growth factor binding protein 3 (IGFBP3), an important member of the IGFBP family, plays an important biological role in regulating cellular proliferation, differentiation, growth, apoptosis, and innate immunity. However, studies concerning IGFBP3 in teleosts are very limited and IGFBP3 function remains unclear. In this study, we conducted both in vivo and in vitro functional analyses of an IGFBP3 (TroIGFBP3) from the teleost fish golden pompano (Trachinotus ovatus). TroIGFBP3 is composed of 286 amino acid residues and shares a high amino acid sequence similarity (50.18%-93.71%) with other IGFBP3 sequences in humans and teleosts. TroIGFBP3 was widely distributed in various tissues, with the highest expression in the liver. TroIGFBP3 expression was significantly upregulated following Vibrio harveyi infection. The results of in vitro assays showed that TroIGFBP3 could stimulate macrophage activation and promote peripheral blood leukocytes (PBLs) proliferation. Meanwhile, TroIGFBP3 overexpression significantly inhibited bacterial infection in fish tissues, whereas TroIGFBP3 knockdown resulted in increased bacterial dissemination and colonization in golden pompano tissues in vivo. Furthermore, recombinant TroIGFBP3 could inhibit cellular proliferation and promote apoptosis of mouse tumor cells. Taken together, these results indicated that TroIGFBP3 plays a significant role in innate antibacterial immunity and provides a theoretical foundation for investigating the function of IGFBP3 in fish immune response.


Assuntos
Doenças dos Peixes/imunologia , Peixes/genética , Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Filogenia , Alinhamento de Sequência/veterinária , Vibrio/fisiologia , Vibrioses/imunologia , Vibrioses/veterinária
13.
Fish Shellfish Immunol ; 86: 525-535, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30521967

RESUMO

CC chemokines are a large subfamily of chemokines that play an important role in the innate immune system. To date, several CC chemokines have been identified in fish species; however, the activities and functions of these putative chemokines remain ambiguous in teleosts, especially in the golden pompano, Trachinotus ovatus. Here, we characterized CC chemokine ligand 4 from T. ovatus (TroCCL4) and studied its functions. TroCCL4 contains a 294 bp open reading frame that encodes a putative peptide comprising 97 amino acids. TroCCL4 shares a high amino acid sequence similarity of 31.11%-78.35% with other CC chemokines sequences in humans and teleosts and has four cysteine residues that are conserved among other CC chemokines. TroCCL4 is also related to the macrophage inflammatory protein (MIP) group of CC chemokines. TroCCL4 expression was most abundant in immune organs and significantly upregulated in a time-dependent manner following Edwardsiella tarda infection. Recombinant TroCCL4 (rTroCCL4) induced the migration of peripheral blood leukocytes and the cellular proliferation of head kidney lymphocytes. In addition, rTroCCL4 inhibited the growth of Escherichia coli and E. tarda, indicating an antimicrobial function. Furthermore, the results of in vivo analysis showed that TroCCL4 overexpression in T. ovatus significantly enhanced macrophage activation; upregulated the gene expression of interleukin 1-ß (IL-1ß), interleukin 15 (IL15), interferon-induced Mx protein (Mx), tumor necrosis factor α (TNFα), complement C3, and major histocompatibility complex (MHC) class Iα and class IIα; and protected against bacterial infection in fish tissues. In contrast, knockdown of TroCCL4 expression resulted in increased bacterial dissemination and colonization in fish tissues. Taken together, our results provide evidence indicating that TroCCL4 has the ability to stimulate leukocytes and macrophages and enhance host immunity to defend against bacterial infection.


Assuntos
Quimiocina CCL4/imunologia , Doenças dos Peixes/imunologia , Peixes/imunologia , Imunidade Inata , Animais , Proliferação de Células , Quimiocina CCL4/genética , Edwardsiella tarda/crescimento & desenvolvimento , Escherichia coli/crescimento & desenvolvimento , Doenças dos Peixes/microbiologia , Peixes/microbiologia , Expressão Gênica , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno , Interleucina-1beta/genética , Ativação de Macrófagos , Fases de Leitura Aberta , Filogenia , Proteínas Recombinantes/imunologia , Alinhamento de Sequência
14.
Dev Comp Immunol ; 92: 105-115, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30448509

RESUMO

Defensins are a group of small cationic and cysteine-rich peptides that are important components of the innate immune system. However, studies on defensins in teleosts are very limited, particularly studies on defensin functions through in vivo assays. In this study, we cloned and identified one ß-defensin (TroBD) the golden pompano, Trachinotus ovatus, and analyzed the functions of TroBD in both in vivo and in vitro assays. TroBD is composed of 63 amino acids and shares high sequence identities (27.27-98.41%) with known ß-defensins of other teleosts. The protein has a signature motif of six conserved cysteine residues within the mature peptide. The expression of TroBD was most abundant in the head kidney and spleen and was significantly upregulated following infection by Vibrio harveyi and viral nervous necrosis virus (VNNV). Purified recombinant TroBD (rTroBD) inhibited the growth of V. harveyi, and its antimicrobial activity was influenced by salt concentration. TroBD was found to have a chemotactic effect on macrophages in vitro. The results of an in vivo study demonstrated that TroBD overexpression/knockdown in T. ovatus significantly reduced/increased bacterial colonization or viral copy numbers in tissues. Taken together, these results indicate that TroBD plays a significant role in both antibacterial and antiviral immunity and provide new avenues for protection against pathogen infection in the aquaculture industry.


Assuntos
Proteínas de Peixes/genética , Rim Cefálico/fisiologia , Macrófagos/imunologia , Perciformes/fisiologia , Vibrioses/imunologia , Vibrio/fisiologia , Viroses/imunologia , beta-Defensinas/genética , Animais , Carga Bacteriana , Movimento Celular , Clonagem Molecular , Proteínas de Peixes/metabolismo , Imunidade Inata , RNA Interferente Pequeno/genética , Regulação para Cima , Carga Viral , beta-Defensinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA