Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Cancer ; 23(1): 131, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38918817

RESUMO

Tumor immune microenvironment (TIME) consists of intra-tumor immunological components and plays a significant role in tumor initiation, progression, metastasis, and response to therapy. Chimeric antigen receptor (CAR)-T cell immunotherapy has revolutionized the cancer treatment paradigm. Although CAR-T cell immunotherapy has emerged as a successful treatment for hematologic malignancies, it remains a conundrum for solid tumors. The heterogeneity of TIME is responsible for poor outcomes in CAR-T cell immunotherapy against solid tumors. The advancement of highly sophisticated technology enhances our exploration in TIME from a multi-omics perspective. In the era of machine learning, multi-omics studies could reveal the characteristics of TIME and its immune resistance mechanism. Therefore, the clinical efficacy of CAR-T cell immunotherapy in solid tumors could be further improved with strategies that target unfavorable conditions in TIME. Herein, this review seeks to investigate the factors influencing TIME formation and propose strategies for improving the effectiveness of CAR-T cell immunotherapy through a multi-omics perspective, with the ultimate goal of developing personalized therapeutic approaches.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/genética , Animais , Genômica/métodos , Linfócitos T/imunologia , Linfócitos T/metabolismo
2.
Cancer Lett ; 598: 217079, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936505

RESUMO

Immunogenic cell death (ICD) is a stress-driven form of regulated cell death (RCD) in which dying tumor cells' specific signaling pathways are activated to release damage-associated molecular patterns (DAMPs), leading to the robust anti-tumor immune response as well as a reversal of the tumor immune microenvironment from "cold" to "hot". Chimeric antigen receptor (CAR)-T cell therapy, as a landmark in anti-tumor immunotherapy, plays a formidable role in hematologic malignancies but falls short in solid tumors. The Gordian knot of CAR-T cells for solid tumors includes but is not limited to, tumor antigen heterogeneity or absence, physical and immune barriers of tumors. The combination of ICD induction therapy and CAR-T cell immunotherapy is expected to promote the intensive use of CAR-T cell in solid tumors. In this review, we summarize the characteristics of ICD, stress-responsive mechanism, and the synergistic effect of various ICD-based therapies with CAR-T cells to effectively improve anti-tumor capacity.

3.
Cancer Lett ; 597: 217083, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925363

RESUMO

The U.S. Food and Drug Administration (FDA) has reported cases of T-cell malignancies, including CAR-positive lymphomas, in patients receiving B cell maturation antigen (BCMA)- or CD19-targeted autologous CAR-T cell immunotherapy. These reports were derived from clinical trials and/or post-marketing adverse event data. This finding has attracted widespread attention. Therefore, it is essential to explore the potential mechanisms by which chimeric antigen receptor (CAR)-T cell therapy triggers secondary T-cell cancers to further guarantee the safety of CAR-T cell therapy.

4.
Sci Rep ; 14(1): 10482, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714855

RESUMO

The mitogen-activated protein kinase (MAPK) pathway plays a critical role in tumor development and immunotherapy. Nevertheless, additional research is necessary to comprehend the relationship between the MAPK pathway and the prognosis of bladder cancer (BLCA), as well as its influence on the tumor immune microenvironment. To create prognostic models, we screened ten genes associated with the MAPK pathway using COX and least absolute shrinkage and selection operator (LASSO) regression analysis. These models were validated in the Genomic Data Commons (GEO) cohort and further examined for immune infiltration, somatic mutation, and drug sensitivity characteristics. Finally, the findings were validated using The Human Protein Atlas (HPA) database and through Quantitative Real-time PCR (qRT-PCR). Patients were classified into high-risk and low-risk groups based on the prognosis-related genes of the MAPK pathway. The high-risk group had poorer overall survival than the low-risk group and showed increased immune infiltration compared to the low-risk group. Additionally, the nomograms built using the risk scores and clinical factors exhibited high accuracy in predicting the survival of BLCA patients. The prognostic profiling of MAPK pathway-associated genes represents a potent clinical prediction tool, serving as the foundation for precise clinical treatment of BLCA.


Assuntos
Sistema de Sinalização das MAP Quinases , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/patologia , Prognóstico , Sistema de Sinalização das MAP Quinases/genética , Masculino , Feminino , Nomogramas , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Idoso , Pessoa de Meia-Idade
5.
Comput Struct Biotechnol J ; 23: 1725-1739, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38689716

RESUMO

Recent advances in high-throughput proteomic profiling technologies have facilitated the precise quantification of numerous proteins across multiple specimens concurrently. Researchers have the opportunity to comprehensively analyze the molecular signatures in plentiful medical specimens or disease pattern cell lines. Along with advances in data analysis and integration, proteomics data could be efficiently consolidated and employed to recognize precise elementary molecular mechanisms and decode individual biomarkers, guiding the precision treatment of tumors. Herein, we review a broad array of proteomics technologies and the progress and methods for the integration of proteomics data and further discuss how to better merge proteomics in precision medicine and clinical settings.

6.
Cell Oncol (Dordr) ; 47(3): 759-777, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38294647

RESUMO

BACKGROUND: In the past decades, cancer enigmatical heterogeneity at distinct expression levels could interpret disparities in therapeutic response and prognosis. It built hindrances to precision medicine, a tactic to tailor customized treatment informed by the tumors' molecular profile. Single-omics analysis dissected the biological features associated with carcinogenesis to some extent but still failed to revolutionize cancer treatment as expected. Integrated omics analysis incorporated tumor biological networks from diverse layers and deciphered a holistic overview of cancer behaviors, yielding precise molecular classification to facilitate the evolution and refinement of precision medicine. CONCLUSION: This review outlined the biomarkers at multiple expression layers to tutor molecular classification and pinpoint tumor diagnosis, and explored the paradigm shift in precision therapy: from single- to multi-omics-based subtyping to optimize therapeutic regimens. Ultimately, we firmly believe that by parsing molecular characteristics, omics-based typing will be a powerful assistant for precision oncology.


Assuntos
Oncologia , Neoplasias , Medicina de Precisão , Humanos , Medicina de Precisão/métodos , Neoplasias/genética , Neoplasias/classificação , Neoplasias/metabolismo , Oncologia/métodos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Genômica/métodos , Proteômica/métodos
7.
Mol Cancer ; 22(1): 130, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563639

RESUMO

The reversible oxidation-reduction homeostasis mechanism functions as a specific signal transduction system, eliciting related physiological responses. Disruptions to redox homeostasis can have negative consequences, including the potential for cancer development and progression, which are closely linked to a series of redox processes, such as adjustment of reactive oxygen species (ROS) levels and species, changes in antioxidant capacity, and differential effects of ROS on downstream cell fate and immune capacity. The tumor microenvironment (TME) exhibits a complex interplay between immunity and regulatory cell death, especially autophagy and apoptosis, which is crucially regulated by ROS. The present study aims to investigate the mechanism by which multi-source ROS affects apoptosis, autophagy, and the anti-tumor immune response in the TME and the mutual crosstalk between these three processes. Given the intricate role of ROS in controlling cell fate and immunity, we will further examine the relationship between traditional cancer therapy and ROS. It is worth noting that we will discuss some potential ROS-related treatment options for further future studies.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Espécies Reativas de Oxigênio/metabolismo , Oxirredução , Apoptose , Autofagia , Neoplasias/metabolismo
8.
Cell Mol Life Sci ; 80(9): 263, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598126

RESUMO

Iron-dependent lipid peroxidation causes ferroptosis, a form of regulated cell death. Crucial steps in the formation of ferroptosis include the accumulation of ferrous ions (Fe2+) and lipid peroxidation, of which are controlled by glutathione peroxidase 4 (GPX4). Its crucial role in stopping the spread of cancer has been shown by numerous studies undertaken in the last ten years. Epithelial-mesenchymal transition (EMT) is the process by which epithelial cells acquire mesenchymal characteristics. EMT is connected to carcinogenesis, invasiveness, metastasis, and therapeutic resistance in cancer. It is controlled by a range of internal and external signals and changes the phenotype from epithelial to mesenchymal like. Studies have shown that mesenchymal cancer cells tend to be more ferroptotic than their epithelial counterparts. Drug-resistant cancer cells are more easily killed by inducers of ferroptosis when they undergo EMT. Therefore, understanding the interaction between ferroptosis and EMT will help identify novel cancer treatment targets. In-depth discussion is given to the regulation of ferroptosis, the potential application of EMT in the treatment of cancer, and the relationships between ferroptosis, EMT, and signaling pathways associated with tumors. Invasion, metastasis, and inflammation in cancer all include ferroptosis and EMT. The goal of this review is to provide suggestions for future research and practical guidance for applying ferroptosis and EMT in clinical practice.


Assuntos
Ferroptose , Neoplasias , Humanos , Transição Epitelial-Mesenquimal , Neoplasias/tratamento farmacológico , Carcinogênese , Células Epiteliais , Ferro
9.
Cell Signal ; 109: 110774, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37331416

RESUMO

The insidious clinical symptoms of pancreatic cancer (PACA), extensive tolerance to radiotherapy and chemotherapy, and insensitivity to immunotherapy result in an inferior prognosis. Redox dyshomeostasis could trigger programmed cell death and contribute to functional changes in immune cells, which is strongly associated with tumorigenesis and tumor development. Therefore, it is warranted to decipher the crosstalk between regulated cell death and immunity in the context of redox dyshomeostasis for PACA. Herein, four redox-related subtypes of PACA were identified: C1 and C2 displayed malignant phenotypes with dismal clinical outcomes, conspicuous enrichment in cell death pathways, high redox score, low immune activation, and "immune-desert" tumor immune microenvironment (TIME); C3, an immune-rejection/excluded subtype, with abundant immune cells, high co-stimulatory, co-inhibitory, and MHC molecules, and potential response to immunotherapy; C4, with the best prognosis, low redox pattern, high level of autophagy, low enrichment of most cell death-related pathways, and "immune-hot" TIME. Overall, this study found an attractive platform from the perspective of redox-related pathways, which would propose insights into the intricate and elaborate molecular mechanisms of PACA and offer more effective and tailored intervention protocols.


Assuntos
Neoplasias Pancreáticas , Morte Celular Regulada , Humanos , Oxirredução , Morte Celular , Microambiente Tumoral , Neoplasias Pancreáticas
10.
Clin Epigenetics ; 15(1): 64, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061743

RESUMO

BACKGROUND: Gastric cancer (GC) is one of the most common malignant tumors of the digestive tract which seriously endangers the health of human beings worldwide. Transcriptomic deregulation by epigenetic mechanisms plays a crucial role in the heterogeneous progression of GC. This study aimed to investigate the impact of epigenetically regulated genes on the prognosis, immune microenvironment, and potential treatment of GC. RESULTS: Under the premise of verifying significant co-regulation of the aberrant frequencies of microRNA (miRNA) correlated (MIRcor) genes and DNA methylation-correlated (METcor) genes. Four GC molecular subtypes were identified and validated by comprehensive clustering of MIRcor and METcor GEPs in 1521 samples from five independent multicenter GC cohorts: cluster 1 was characterized by up-regulated cell proliferation and transformation pathways, with good prognosis outcomes, driven by mutations, and was sensitive to 5-fluorouracil and paclitaxel; cluster 2 performed moderate prognosis and benefited more from apatinib and cisplatin; cluster 3 was featured by an up-regulated ligand-receptor formation-related pathways, poor prognosis, an immunosuppression phenotype with low tumor purity, resistant to chemotherapy (e.g., 5-fluorouracil, paclitaxel, and cisplatin), and targeted therapy drug (apatinib) and sensitive to dasatinib; cluster 4 was characterized as an immune-activating phenotype, with advanced tumor stages, benefit more from immunotherapy and displayed worst prognosis. CONCLUSIONS: According to the epigenetically regulated GEPs, we developed four robust GC molecular subtypes, which facilitated the understanding of the epigenetic mechanisms underlying GC heterogeneity, offering an optimized decision-making and surveillance platform for GC patients.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Prognóstico , Cisplatino/uso terapêutico , Transcriptoma , Metilação de DNA , Fluoruracila , Paclitaxel , Microambiente Tumoral
11.
Mol Cancer ; 21(1): 220, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517820

RESUMO

Cancer drug resistance represents the main obstacle in cancer treatment. Drug-resistant cancers exhibit complex molecular mechanisms to hit back therapy under pharmacological pressure. As a reversible epigenetic modification, N6-methyladenosine (m6A) RNA modification was regarded to be the most common epigenetic RNA modification. RNA methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers) are frequently disordered in several tumors, thus regulating the expression of oncoproteins, enhancing tumorigenesis, cancer proliferation, development, and metastasis. The review elucidated the underlying role of m6A in therapy resistance. Alteration of the m6A modification affected drug efficacy by restructuring multidrug efflux transporters, drug-metabolizing enzymes, and anticancer drug targets. Furthermore, the variation resulted in resistance by regulating DNA damage repair, downstream adaptive response (apoptosis, autophagy, and oncogenic bypass signaling), cell stemness, tumor immune microenvironment, and exosomal non-coding RNA. It is highlighted that several small molecules targeting m6A regulators have shown significant potential for overcoming drug resistance in different cancer categories. Further inhibitors and activators of RNA m6A-modified proteins are expected to provide novel anticancer drugs, delivering the therapeutic potential for addressing the challenge of resistance in clinical resistance.


Assuntos
Adenosina , Neoplasias , Humanos , Adenosina/metabolismo , Metiltransferases/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , RNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Microambiente Tumoral
12.
Int J Biol Sci ; 18(15): 5607-5623, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263174

RESUMO

Immunotherapy treatments harnessing the immune system herald a new era of personalized medicine, offering considerable benefits for cancer patients. Over the past years, tumor neoantigens emerged as a rising star in immunotherapy. Neoantigens are tumor-specific antigens arising from somatic mutations, which are proceeded and presented by the major histocompatibility complex on the cell surface. With the advancement of sequencing technology and bioinformatics engineering, the recognition of neoantigens has accelerated and is expected to be incorporated into the clinical routine. Currently, tumor vaccines against neoantigens mainly encompass peptides, DNA, RNA, and dendritic cells, which are extremely specific to individual patients. Due to the high immunogenicity of neoantigens, tumor vaccines could activate and expand antigen-specific CD4+ and CD8+ T cells to intensify anti-tumor immunity. Herein, we introduce the origin and prediction of neoantigens and compare the advantages and disadvantages of multiple types of neoantigen vaccines. Besides, we review the immunizations and the current clinical research status in neoantigen vaccines, and outline strategies for enhancing the efficacy of neoantigen vaccines. Finally, we present the challenges facing the application of neoantigens.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Vacinas Anticâncer/genética , Vacinas Anticâncer/uso terapêutico , Imunoterapia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Peptídeos , RNA
13.
Theranostics ; 12(14): 6273-6290, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36168626

RESUMO

Chimeric antigen receptor (CAR)-T cell therapy represents a landmark advance in personalized cancer treatment. CAR-T strategy generally engineers T cells from a specific patient with a new antigen-specificity, which has achieved considerable success in hematological malignancies, but scarce benefits in solid tumors. Recent studies have demonstrated that tumor immune microenvironment (TIME) cast a profound impact on the immunotherapeutic response. The immunosuppressive landscape of TIME is a critical obstacle to the effector activity of CAR-T cells. Nevertheless, every cloud has a silver lining. The immunosuppressive components also shed new inspiration on reshaping a friendly TIME by targeting them with engineered CARs. Herein, we summarize recent advances in disincentives of TIME and discuss approaches and technologies to enhance CAR-T cell efficacy via addressing current hindrances. Simultaneously, we firmly believe that by parsing the immunosuppressive components of TIME, rationally manipulating the complex interactions of immunosuppressive components, and optimizing CAR-T cell therapy for each patient, the CAR-T cell immunotherapy responsiveness for solid malignancies will be substantially enhanced, and novel therapeutic targets will be revealed.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Terapia de Imunossupressão , Imunoterapia Adotiva , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA