RESUMO
Gas-phase reactive nitrogen species (Nr) are important drivers of indoor air quality. Cooking and cleaning are significant direct sources indoors, whose emissions will vary depending on activity and materials used. Commercial kitchens experience regular high volumes of both cooking and cleaning, making them ideal study locations for exploring emission factors from these sources. Here, we present a total Nr (tNr) budget and contributions of key species NO, NO2, acidic Nr (primarily HONO) and basic Nr (primarily NH3) using novel instrumentation in a commercial kitchen over a two-week period. In general, highest tNr was observed in the morning and driven compositionally by NO, indicative of cooking events in the kitchen. The observed HONO and basic Nr levels were unexpectedly stable throughout the day, despite the dynamic and high air change rate in the kitchen. After summing the measured NOx, HONO and Nr,base fractions, there was on average 5 ppbv of Nr unaccounted for, expected to be dominated by neutral Nr species. Using co-located measurements from a proton transfer reaction mass spectrometer (PTR-MS), we propose the identities for these major Nr species from cooking and cleaning that contributed to Nr,base and the neutral fraction of tNr. When focused specifically on cooking events in the kitchen, a vast array of N-containing species was observed by the PTR-MS. Reproducibly, oxygenated N-containing class ions (C1-12H3-24O1-4N1-3), consistent with the known formulae of amides, were observed during meat cooking and may be good cooking tracers. During cleaning, an unexpectedly high level of chloramines was observed, with monochloramine dominating the profile, as emitted directly from HOCl based cleaners or through surface reactions with reduced-N species. For many species within the tNr budget, including HONO, acetonitrile and basic Nr species, we observed stable levels day and night despite the high air change rate during the day (>27 h-1). The stable levels for these species point to large surface reservoirs which act as a significant indoor source, that will be transported outdoors with ventilation.
RESUMO
The role of B-cell lymphoma 2 (BCL2)-associated X (BAX) macropores in the leakage of mitochondrial DNA (mtDNA) and their impact on acute kidney injury (AKI) has recently been brought to the focus of researchers. This study aimed to explore the relationship between mtDNA leakage and BAX macropores during wasp sting-induced AKI. BAX mitochondrial translocation and macropores opening increased in both in vivo and in vitro models of wasp sting-induced AKI. In a mouse model, BAX inhibition dramatically attenuated mitochondrial impairment, cytoplasmic release of mtDNA, and suppressed activation of the mtDNA-cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. This attenuation improved kidney function, reduced inflammatory response, and decreased apoptosis in mouse models. Furthermore, in cultured human proximal tubular epithelial cells (HK-2) treated with myoglobin and subjected to BAX knockdown, quantitative real-time polymerase chain reaction (PCR) directly demonstrated decreased mtDNA release into the cytoplasm. Consistent with in vivo results, downregulation of BAX expression in vitro ameliorated mitochondrial damage and attenuated subsequent inflammation and apoptosis caused by the activation of the mtDNA-cGAS-STING signaling pathway. Our findings revealed that mtDNA is released into the cytoplasm through BAX macropores in wasp sting-induced AKI, which provided an important novel perspective for understanding wasp sting-induced AKI and is conducive for identifying novel therapeutic targets and strategies.
RESUMO
The relationship between perfluoroalkyl substances (PFASs) and the risk of breast cancer has been controversial. Here, we used the National Health and Nutrition Examination Survey (NHANES) database and a meta-analysis to examine the association between PFASs and breast cancer incidence. From the NHANES database, we obtained data on PFASs and breast cancer from 2003 to 2014. We searched PubMed, Web of Science, Scopus and PsycINFO from the establishment of the databases to August 24, 2023, for research on PFASs related to breast cancer. A meta-analysis was performed using Stata 12.0. A total of 1430 subjects aged 20 years or older were selected from the NHANES. The logistic regression results indicated that there was no correlation between breast cancer and PFASs (P > 0.05). The meta-analysis, included nine studies with a total of 2399 breast cancer patients, included in the meta-analysis, revealed no statistically significant association between PFASs and the risk of breast cancer (odds ratio = 1.04; 95 % confidence interval, 0.88-1.21; P > 0.05). The results show that PFASs are not associated with breast cancer risk.
Assuntos
Neoplasias da Mama , Fluorocarbonos , Inquéritos Nutricionais , Humanos , Fluorocarbonos/análise , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/induzido quimicamente , Feminino , Poluentes Ambientais , Estados Unidos/epidemiologia , Bases de Dados Factuais , AdultoRESUMO
Metal-semiconductor heterostructured catalysts have attracted great attention because of their unique interfacial characteristics and superior catalytic performance. Exsolution of nanoparticles is one of the effective and simple ways for in-situ growth of metal nanoparticles embedded in oxide surfaces and their favorable dispersion and stability. However, both high-temperature and a reducing atmosphere are required simultaneously in conventional exsolution, which is time-consuming and costly, and particles often agglomerate during the process. In this work, Ca0.9Ti0.8Ni0.1Fe0.1O3-δ (CTNF) is exposed to dielectric blocking discharge (DBD) plasma at room temperature to fabricate alloying FeNi3 nanoparticles from CTNF perovskite. FeNi3-CTNF has outstanding catalytic activity for photothermal reverse water gas shift reaction (RWGS). At 350 °C under full-spectrum irradiation, the carbon monoxide (CO) yield of FeNi3-CTNF (10.78 mmol g-1 h-1) is 11 times that of pure CaTiO3(CTO), and the CO selectivity is 98.9%. This superior catalytic activity is attributed to the narrow band gap, photogenerated electron migration to alloy particles, and abundant surface oxygen vacancies. The carbene pathway reaction is also investigated through in-situ Raman spectroscopy. The present work presents a straightforward method for the exsolution of nanoalloys in metal-semiconductor heterostructures for photothermal CO2 reduction.
RESUMO
Fine particulate matter (PM2.5) released during the livestock industry endangers the respiratory health of animals. Our previous findings suggested that broilers exposed to PM2.5 exhibited lung inflammation and changes in the pulmonary microbiome. Therefore, this study was to investigate whether the pulmonary microbiota plays a causal role in the pathogenesis of PM2.5-induced lung inflammation. We first used antibiotics to establish a pulmonary microbiota intervention broiler model, which showed a significantly reduced total bacterial load in the lungs without affecting the microbiota composition or structure. Based on it, 45 AA broilers of similar body weight were randomly assigned to three groups: control (CON), PM2.5 (PM), and pulmonary microbiota intervention (ABX-PM). From 21 d of age, broilers in the ABX-PM group were intratracheally instilled with antibiotics once a day for 3 d. Meanwhile, broilers in the other two groups were simultaneously instilled with sterile saline. On 24 and 26 d of age, broilers in the PM and ABX-PM groups were intratracheally instilled with PM2.5 suspension to induce lung inflammation, and broilers in the CON group were simultaneously instilled with sterile saline. The lung histomorphology, inflammatory cytokines' expression levels, lung microbiome, and microbial growth conditions were analyzed to determine the effect of the pulmonary microbiota on PM2.5-induced lung inflammation. Broilers in the PM group showed lung histological injury, while broilers in the ABX-PM group had normal lung histomorphology. Furthermore, microbiota intervention significantly reduced mRNA expression levels of interleukin-1ß, tumor necrosis factor-α, interleukin-6, interleukin-8, toll-like receptor 4 and nuclear factor kappa-B. PM2.5 induced significant changes in the ß diversity and structure of the pulmonary microbiota in the PM group. However, no significant changes in microbiota structure were observed in the ABX-PM group. Moreover, the relative abundance of Enterococcus cecorum in the PM group was significantly higher than that in the CON and ABX-PM groups. And sterile bronchoalveolar lavage fluid from the PM group significantly promoted the growth of E. cecorum, indicating that PM2.5 altered the microbiota's growth condition. In conclusion, pulmonary microbiota can affect PM2.5-induced lung inflammation in broilers. PM2.5 can alter the bacterial growth environment and promote dysbiosis, potentially exacerbating inflammation.
Fine particulate matter (PM2.5) in broiler houses has a negative impact on broiler respiratory tracts, and PM2.5 exposure can induce lung inflammation and cause microbiota dysbiosis. The pulmonary microbiota is involved in maintaining immune homeostasis in the lungs, and a variety of lung diseases exhibit microbiota disturbances. However, the correlation between the pulmonary microbiota and PM2.5-induced lung inflammation is poorly understood. This study aimed to investigate whether the pulmonary microbiota influenced PM2.5-induced lung inflammation. We use antibiotics to reduce the quantity of bacteria in the lungs without destroying their composition. PM2.5 was then used to induce lung inflammation in both untreated and intervened pulmonary microbiota broilers. Compared to untreated microbiota broilers, intervened microbiota broilers had less morphological lung tissue injury and lower inflammatory factor expression levels after PM2.5 exposure. Furthermore, the intervened microbiota broilers' microbiota structure remained normal, while the untreated microbiota broilers showed dysbiosis. This dysbiosis is closely linked to changes in the microbial growth environment due to the inflammatory response. This suggested that the pulmonary microbiota affects PM2.5-induced lung inflammation in broilers. Dysbiosis caused by inflammation that alters the conditions for bacterial growth may exacerbate inflammation.
Assuntos
Lesão Pulmonar , Microbiota , Pneumonia , Animais , Material Particulado/toxicidade , Material Particulado/metabolismo , Galinhas , Pulmão/patologia , Pneumonia/induzido quimicamente , Pneumonia/veterinária , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Lesão Pulmonar/veterinária , Inflamação/induzido quimicamente , Inflamação/veterinária , Inflamação/complicaçõesRESUMO
Dental caries continues to be a major global public health problem. Remineralization of demineralized dentin is regarded as one of the hotspots in the current study in the treatment of dental caries. However, traditional remineralization agents, which usually lack the ability to bind to demineralized dentin collagen, are easily removed by the fluids in the oral cavity, thus decreasing the remineralization efficacy. Non-collagenous proteins (NCPs) have significant effects on the biomineralization of dentin due to their dual high binding capacity to the collagen fibers and minerals. But NCPs are hard to extract, store and use directly. Inspired by the biological behavior of NCPs, in this study, we selected two functional sequences of NCPs to develop a novel and engineered dual-functional peptide (which is referred to as CYP) with collagen-binding and mineral-absorbing capability. The binding ability of CYP to collagen fibers and demineralized dentin was investigated, and the results suggested that CYP was endowed with good binding capacity to demineralized dentin, which could resist the washing of the fluid. In addition, we confirmed that CYP exerted formidable remineralization effects in collagen fibers and demineralized dentin following an in vitro remineralization regimen. Furthermore, the dual functions of CYP with good biocompatibility can simultaneously bind collagen and induce nanocrystal precipitation, thereby significantly absorbing calcium and phosphorus ions to form regenerated minerals for reversing the tooth decay process in the rat caries model. Overall, the dual functional peptide CYP fabricated in this study provides an ideal and smart strategy for dentin remineralization and the treatment of caries.
Assuntos
Cárie Dentária , Humanos , Cárie Dentária/tratamento farmacológico , Cárie Dentária/metabolismo , Minerais/metabolismo , Colágeno/química , Peptídeos/metabolismo , DentinaRESUMO
Paris polyphylla var. chinensis (Franch.) Hara is a perennial herb belonging to the Trilliaceae family. Ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS) was used to detect the composition of different fractions of Paris polyphylla var. chinensis leaves. Meanwhile, the extracts of different fractions were evaluated for their cytotoxic activities against four selected human cancer cell lines and one human normal epithelial cell line based on the MTT assay method. Multivariate statistical analysis was performed to screen differential compounds and to analyze the distributions between different fractions. Finally, more than 60 compounds were obtained and identified from the different fractions of Paris polyphylla var. chinensis leaves, and the chloroform and n-butanol extracts showed significant cytotoxic effects on these four cancer cells. Several compounds were preliminarily identified from different fractions, including 36 steroidal saponins, 11 flavonoids, 10 ceramides, 8 lipids, 6 organic acids, and 8 other compounds. Various compounds were screened out as different chemical components of different fractions, which were considered as a potential substance basis for the cytotoxicity of Paris polyphylla var. chinensis leaves.
Assuntos
Liliaceae , Melanthiaceae , Saponinas , Humanos , Liliaceae/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Saponinas/químicaRESUMO
Anlotinib is a small-molecule RTK inhibitor that has achieved certain results in further-line treatment, but many patients do not respond to this drug and lack effective methods for identification. Although radiomics has been widely used in lung cancer, very few studies have been conducted in the field of antiangiogenic drugs. This study aims to develop a new model to predict the efficacy of patients receiving anlotinib by combining pretreatment computed tomography (CT) radiomic characters with clinical characters, in order to assist precision medicine of pulmonary cancer. 254 patients from seven institutions were involved in the study. Lesions were selected according to the RECIST 1.1 criteria, and the corresponding radiomic features were obtained. We constructed prediction models based on clinical, NCE-CT, and CE-CT radiomic features, respectively, and evaluated the prediction performance of the models for training sets, internal validation sets, and external validation sets. In the RAD score only model, the area under curve(AUC) of the NCE-CT cohort was 0.740 (95% CI: 0.622, 0.857) for the training set, 0.711 (95% CI: 0.480, 0.942) for the internal validation set, and 0.633(95% CI: 0.479, 0.787) for the external validation set, while that of the CE-CT cohort was 0.815 (95% CI: 0.705, 0.926) for the training set, 0.771 (95% CI: 0.539, 1.000) for the internal validation set, and 0.701 (95% CI: 0.489, 0.913) for the external validation set. In the RAD score-combined model, the AUC of the NCE-CT cohort was 0.796 (95% CI: 0.691, 0.901) for the training set, 0.579 (95% CI: 0.309, 0.848) for the internal validation set, and 0.590 (95% CI: 0.427, 0.753) for the external validation set, while that of the CE-CT cohort was 0.902 (95% CI: 0.828, 0.977) for the training set, 0.865 (95% CI: 0.696, 1.000) for the internal validation set, and 0.837 (95% CI: 0.682, 0.992) for the external validation set. In conclusion, radiomics has accurate predictions for the efficacy of anlotinib. CE-CT-based radiomic models have the best predictive potential in predicting the efficacy of anlotinib, and model predictions become better when they are combined with clinical characteristics.
RESUMO
The proof-of-concept strategy in this study based on biodegradable and biocompatible self-assembling fluorescent virus-like particle/RNAi nanocomplexes (VLP/RNAi) produced in Escherichia coli (E. coli) followed by surface modification with a cell-penetrating peptide (CPP) and an apolipoprotein E peptide (ApoEP) (dP@VLP/RNAi), which can cross the blood-brain barrier (BBB) to inhibit the DNA repair mechanism and act synergistically with temozolomide (TMZ) for promoting clinical chemotherapy has achieved good therapeutic effects towards malignant brain tumors. The synergistic value of this study's design was verified in intracranial mouse models of glioblastomas (GBMs). Intravenous administration of this formulation enhanced the curative efficacy of TMZ by downregulating the hepatocyte growth factor receptor (c-MET) gene in GBM U87 cells. Furthermore, upon gene-chemotherapy, the methylated DNA in GBM U87 cells was significantly enhanced by inhibiting the DNA repair mechanism, leading to significant brain tumor suppression. The results of this study could be critical for the design of RNAi-based genetic therapeutics for promoting chemotherapy against brain tumors.