Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 139: 18-26, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28092736

RESUMO

The present study explored the possible preventive effects of blue light emitting diodes (LEDs) on cadmium (Cd)-induced oxidative stress and immunotoxicity in zebrafish. To this end, zebrafish were exposed to a white fluorescent bulb or blue LEDs (LDB, peak at 450nm, at an irradiance of 0.9W/m2), and 0 or 30µgL-1 waterborne Cd for 5 weeks. Growth performance, survival rate, and hepatic histology, ultrastructure, antioxidant and innate immune responses were determined in zebrafish. Cd exposure alone reduced growth and survival rate, and induced oxidative damage and changes in histology and ultrastructure. However, Cd exposure in combination with LDB apparently relieved these negative effects. The alleviation of adverse effects might result from the up-regulation of antioxidant and innate immune genes at transcriptional, translational, or post-translational levels. Cd exposure alone dramatically enhanced mRNA levels of nuclear transcription factor κB (NF-κB) and E2-related factor (Nrf2). However, compared to Cd exposure alone, Cd exposure in combination with LDB apparently down-regulated both genes. Taken together, our results suggest that chronic Cd exposure induced a negative effect on zebrafish, possibly involved in NF-κB-induced immunotoxicity and Nrf2-induced oxidative stress. Finally, for the first time, our data demonstrated that LDB could protect fish against Cd toxicity.


Assuntos
Antioxidantes , Cádmio/toxicidade , Imunidade Inata , Luz , Fígado/efeitos dos fármacos , Estresse Oxidativo , Peixe-Zebra/metabolismo , Animais , Antioxidantes/metabolismo , Regulação para Baixo , Exposição Ambiental , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Fígado/metabolismo , Fígado/patologia , Fígado/ultraestrutura , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , Regulação para Cima , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Aquat Toxicol ; 182: 113-119, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27888766

RESUMO

Up to date, little information is available on effects of circadian rhythm on metal-induced toxicity in fish. In this study, zebrafish were acutely exposed to 0.97mgL-1 cadmium for 12h either at ZT0 (the light intensity began to reached maximum) or at ZT12 (light intensity began to reached minimum) to evaluate the temporal sensitivity of oxidative stress and inflammatory responses in the brain of zebrafish. Profiles of responses of some genes at mRNA, protein and activity levels were different between ZT0 and ZT12 in the normal water. Exposure to Cd induced contrary antioxidant responses and similar inflammatory responses between ZT0 and ZT12. However, the number of inflammatory genes which were up-regulated was significantly greater at ZT12 than at ZT0. And, the up-regulated inflammatory genes were more responsive at ZT12 than at ZT0. At ZT12, antioxidant genes were down-regulated at mRNA, protein and activity levels. Contrarily, antioxidant genes were not affected at mRNA levels but activated at the protein and/or activity levels at ZT0. Reactive oxygen species (ROS) sharply increased and remained relatively stable when fish were exposed to Cd at ZT12 and ZT0, respectively. Positive correlations between ROS levels and mRNA levels of nuclear transcription factor κB (NF-κB) and between mRNA levels of NF-κB and its target genes were observed, suggesting that ROS may play an essential role in regulating the magnitude of inflammatory responses. Taken together, oxidative stress and immunotoxicity in the brain were more serious when fish were exposed to Cd in the evening than in the morning, highlighting the importance of circadian rhythm in Cd-induced neurotoxicity in fish.


Assuntos
Antioxidantes/metabolismo , Encéfalo/efeitos dos fármacos , Cádmio/toxicidade , Ritmo Circadiano/fisiologia , Inflamação/induzido quimicamente , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/fisiologia , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Regulação para Baixo/efeitos dos fármacos , Inflamação/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Testes de Toxicidade Aguda , Regulação para Cima/efeitos dos fármacos
3.
Fish Physiol Biochem ; 42(6): 1595-1607, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27380381

RESUMO

AMP-activated protein kinase (AMPK) is a highly conserved and multi-functional protein kinase that plays important roles in both intracellular energy balance and cellular stress response. In the present study, molecular characterization, tissue distribution and gene expression levels of the AMPK α1 and α2 genes from turbot (Scophthalmus maximus) under salinity stress are described. The complete coding regions of the AMPK α1 and α2 genes were isolated from turbot through degenerate primers in combination with RACE using muscle cDNA. The complete coding regions of AMPK α1 (1722 bp) and α2 (1674 bp) encoded 573 and 557 amino acids peptides, respectively. Multiple alignments, structural analysis and phylogenetic tree construction indicated that S. maximus AMPK α1 and α2 shared a high amino acid identity with other species, especially fish. AMPK α1 and α2 genes could be detected in all tested tissues, indicating that they are constitutively expressed. Salinity challenges significantly altered the gene expression levels of AMPK α1 and α2 mRNA in a salinity- and time-dependent manners in S. maximus gill tissues, suggesting that AMPK α1 and α2 played important roles in mediating the salinity stress in S. maximus. The expression levels of AMPK α1 and α2 mRNA were a positive correlation with gill Na+, K+-ATPase activities. These findings will aid our understanding of the molecular mechanism of juvenile turbot in response to environmental salinity changes.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Proteínas de Peixes/genética , Linguados/genética , Salinidade , Estresse Fisiológico/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/genética , Proteínas de Peixes/metabolismo , Linguados/metabolismo , Expressão Gênica , Brânquias/enzimologia , Filogenia , Isoformas de Proteínas/genética , RNA Mensageiro/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA