Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 267(Pt 1): 131584, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615856

RESUMO

Heterocyclic aromatic amines (HAAs) are the main carcinogens produced during thermal processing of protein-rich foods. In this paper, a composite aerogel (TOCNFCa) with a stabilized dual-network structure was prepared via a template for the in-situ synthesis of UiO-66 on cellulose for the adsorption of HAAs in food. The dual-network structure of TOCNFCa provides the composite aerogel with excellent wet strength, maintaining excellent compressive properties. With the in-situ grown UiO-66 content up to 71.89 wt%, the hierarchical porosity endowed TOCNFCa@UiO-66 with the ability to rapidly adsorb HAAs molecules with high capacity (1.44-5.82 µmol/g). Based on excellent thermal stability, adsorption capacity and anti-interference, TOCNFCa@UiO-66 achieved satisfactory recoveries of HAAs in the boiled marinade, which is faster and more economical than the conventional SPE method. Moreover, TOCNFCa@UiO-66 could maintain 84.55 % of the initial adsorption capacity after 5 times of reuse.


Assuntos
Aminas , Celulose , Compostos Heterocíclicos , Estruturas Metalorgânicas , Nanofibras , Ácidos Ftálicos , Celulose/química , Adsorção , Aminas/química , Nanofibras/química , Estruturas Metalorgânicas/química , Compostos Heterocíclicos/química , Géis/química , Porosidade
2.
Food Chem ; 449: 139225, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599107

RESUMO

Heterocyclic aromatic amines (HAAs), arising as chemical derivatives during the high-temperature culinary treatment of proteinaceous comestibles, exhibit notable carcinogenic potential. In this paper, a composite aerogel (AGD-UiO-66) with high-capacity and fast adsorption of HAAs was made with anchoring defective UiO-66 (D-UiO-66) mediated by lauric acid on the backbone of cellulose nanofibers (CNF). AGD-UiO-66 with hierarchical porosity reduced the mass transfer efficiency for the adsorption of HAAs and achieved high adsorption amount (0.84-1.05 µmol/g) and fast adsorption (15 min). The isothermal adsorption model demonstrated that AGD-UiO-66 belonged to a multilayer adsorption mechanism for HAAs. Furthermore, AGD-UiO-66 was successfully used to adsorb 12 HAAs in different food (roasted beef, roasted pork, roasted salmon and marinade) with high recoveries of 94.65%-104.43%. The intrinsic potential of AGD-UiO-66 demonstrated that it could be widely applicable to the adsorption of HAAs in foods.


Assuntos
Aminas , Celulose , Nanocompostos , Adsorção , Aminas/química , Celulose/química , Animais , Nanocompostos/química , Compostos Heterocíclicos/química , Bovinos , Suínos , Salmão , Estruturas Metalorgânicas/química , Carne/análise , Contaminação de Alimentos/análise , Géis/química
3.
Food Chem ; 428: 136765, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423109

RESUMO

High internal phase emulsions (HIPEs) have emerged as a promising structured oil system in food industry. This study developed self-emulsifying HIPEs (SHIPEs) using Antarctic krill oil (KO) with endogenous phospholipids as surfactant and algae oil as a diluent. The influence of phospholipids self-assembly on SHIPEs formation was investigated by evaluating the microstructures, particle size, rheological properties, and water distribution. Results demonstrated that the concentration and self-assembly behavior of phospholipids dominated the SHIPEs formation. Optimized SHIPEs with desirable gel properties contained 10 wt% krill oil in the oil phase at an 80 wt% oil phase level. Furthermore, these SHIPEs exhibited excellent performance in 3D printing applications. Hydrated phospholipids formed lamellar network at the oil-water interface, enhancing gel strength by crosslinking oil droplets. These findings shed light on the self-assembly of phospholipids during HIPEs formation and highlight the potential phospholipids-rich marine lipids in SHIPEs for functional food products development.


Assuntos
Euphausiacea , Fosfolipídeos , Animais , Emulsões/química , Fosfolipídeos/química , Euphausiacea/química , Óleos/química , Tamanho da Partícula , Água/química
4.
Food Funct ; 13(18): 9544-9558, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-35997033

RESUMO

This study investigated the influence of carrier oils on the in vitro and in vivo bioavailability of PTE encapsulated in scallop gonad protein isolates (SGPIs)-epigallocatechin gallate (EGCG) conjugate stabilized emulsions. The SGPIs-EGCG stabilized emulsions were subjected to an in vitro simulated digestion, and the resulting corn oil and MCT micelles were used to evaluate the PTE transportation using the Caco-2 cell model. Both emulsions remarkably improved the bioaccessibility of PTE in the micelle phase. Nevertheless, corn oil emulsions increased trans-enterocyte transportation of PTE more efficiently than MCT emulsions. Furthermore, the maximum plasma concentrations of PTE and its metabolites in mice fed with PTE emulsions were prominently higher than those in mice fed with PTE solution, while the in vivo metabolic patterns of PTE in different oil-stabilized emulsions were different. Therefore, SGPIs-EGCG stabilized emulsions could enhance the bioavailability of PTE through controlled release, in which corn oil is more suitable than MCT.


Assuntos
Micelas , Pectinidae , Animais , Disponibilidade Biológica , Células CACO-2 , Catequina/análogos & derivados , Óleo de Milho/metabolismo , Preparações de Ação Retardada/metabolismo , Emulsões/metabolismo , Excipientes/metabolismo , Gônadas/metabolismo , Humanos , Camundongos , Óleos/metabolismo , Pectinidae/metabolismo , Proteínas/metabolismo , Estilbenos
5.
Food Funct ; 13(4): 1785-1796, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35142324

RESUMO

The effects of oxidation on protein digestion and transport in cooked abalone muscles were investigated using a combination of simulated digestion and everted-rat-gut-sac models for the first time. Boiling heat treatments caused protein oxidation in the abalone muscles, reflected by increases in the carbonyl group and disulfide bond contents, protein hydrophobicity and aggregation degree, as well as decreases in the free sulfhydryl group and amino acid contents. Protein oxidation significantly inhibited the degree of hydrolysis, digestion rate, and digestibility of the abalone muscles in the simulated digestion model. The results from the everted-rat-gut-sac model showed that amino acid and peptide transport levels from the digestion products of the cooked abalone muscles were lower than those of the uncooked samples. In contrast, the addition of antioxidants of bamboo leaves mitigated heat-treatment-induced protein oxidation, aggregation and increased hydrophobicity, and consequently improved abalone muscle protein digestibility and transport levels.


Assuntos
Antioxidantes , Gastrópodes/química , Músculos/metabolismo , Sasa/química , Alimentos Marinhos , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Digestão/efeitos dos fármacos , Masculino , Modelos Biológicos , Músculos/química , Oxirredução , Folhas de Planta/química , Ratos , Ratos Sprague-Dawley
6.
Food Chem ; 373(Pt B): 131435, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34741971

RESUMO

Blue mussel (Mytilus edulis L.) is a popular, nutritional, and tasty mollusk. To better understand the composition of nutrients and improve further processing of the mussels, metabolomic approaches were used to analyze the free amino acids, 5'-nucleotides, and lipid compositions of different tissues. Our results showed that the viscera and gonad were rich in glutamine and glycine. Adenosine 5'-monophosphate, uridine 5'-monophosphate, guanosine 5'-monophosphate, and inosine 5'-monophosphate were abundant in the mantle, foot, and adductor muscle. Three main types of lipids, phospholipids (PLs), glycerides, and fatty acids (FAs), were semi-quantified. PLs were mainly distributed in the gonad of male mussels and viscera, gonad, and mantles of female mussels. FAs were relatively high in the viscera of males and in the gonad and viscera of females. The viscera of females were rich in phosphatidylcholine, such as 16:0/22:6 and 16:0/20:5. Triglycerides were the key lipids for distinguishing different tissues, especially 16:0/18:1/18:3 and 16:0/18:4/20:5.


Assuntos
Mytilus edulis , Aminoácidos , Animais , Feminino , Masculino , Espectrometria de Massas , Metabolômica , Nucleotídeos , Fosfolipídeos
7.
Ultrason Sonochem ; 82: 105883, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34952344

RESUMO

The combined effects of ultrasound and the antioxidants of bamboo leaves (AOB) on the quality maintenance of the adductor muscle of scallops (AMSs) during cold storage was investigated. Ultrasound power at 350 W coupled with AOB solution (2% w/v) (UAOB-350) was applied to treat the AMSs according to Taylor diagram analysis. The microstructure, oxidative changes (lipid and protein oxidation), total numbers of colonies, total volatile basic nitrogen, and texture of the AMSs during 6 days of cold storage were analysed. The results indicated that UAOB-350 treatment could effectively retard protein and lipid oxidation and bacterial growth and maintain better microstructure and texture characteristics than AOB solution treatment alone, prolonging the shelf life of the AMSs by 2 days during storage at 4 °C. These results indicate that the UAOB-350 combination method has promising potential to maintain the quality and extend the shelf life of AMSs during cold storage.


Assuntos
Pectinidae , Animais , Antioxidantes , Lipídeos , Músculo Esquelético , Alimentos Marinhos/análise
8.
Front Nutr ; 8: 686663, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926539

RESUMO

Oral diseases have received considerable attention worldwide as one of the major global public health problems. The development of oral diseases is influenced by socioeconomic, physiological, traumatic, biological, dietary and hygienic practices factors. Currently, the main prevention strategy for oral diseases is to inhibit the growth of biofilm-producing plaque bacteria. Tooth brushing is the most common method of cleaning plaque, aided by mouthwash and sugar-free chewing gum in the daily routine. As the global nutraceutical market grows, marine bioactive compounds are becoming increasingly popular among consumers for their antibacterial, anti-inflammatory and antitumor properties. However, to date, few systematic summaries and studies on the application of marine bioactive compounds in oral health exist. This review provides a comprehensive overview of different marine-sourced bioactive compounds and their health benefits in dental caries, gingivitis, periodontitis, halitosis, oral cancer, and their potential use as functional food ingredients for oral health. In addition, limitations and challenges of the application of these active ingredients are discussed and some observations on current work and future trends are presented in the conclusion section.

9.
J Food Sci ; 86(9): 4001-4016, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34318481

RESUMO

Here, a novel decapeptide IVTNWDDMEK with Maillard reactivity derived from scallop Chlamys farreri mantle was identified. The structural characteristics and in vitro hepatoprotective effects of IVTNWDDMEK conjugated with ribose were further investigated. The changes in decapeptide structures were determined by ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR), and atomic force microscopy (AFM), and the modification sites induced by Maillard reaction of IVTNWDDMEK and ribose were monitored by high performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS). Maillard reaction products (MRPs) of IVTNWDDMEK-ribose demonstrate hepatoprotective benefits through the suppression of DNA damage and apoptosis induced by oxidative stress in human HepG2 cells in addition to enhancing the antioxidant activities. Moreover, after treatment with decapeptide-ribose MRPs, the activities of cellular antioxidative enzymes, such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione reductase (GSH-Rx) were remarkably increased, while the content of malondialdehyde (MDA) was decreased compared with H2 O2 - treated group, thereby enhancing the intracellular antioxidant defenses. These findings demonstrate the potential utilization of decapeptide IVTNWDDMEK-ribose MRPs as food antioxidants to suppress oxidative damage. PRACTICAL APPLICATION: In recent years, several food-derived bioactive peptides and their derivatives are regarded as good dietary antioxidants for reducing oxidative stress and improving liver function. Here, a novel Maillard reactive decapeptide IVTNWDDMEK, identified from scallop mantle hydrolysates by peptidomics in the previous study was synthesized. Then, the correlation between intercellular antioxidant activities and chemical structure changes of IVTNWDDMEK-ribose Maillard reaction conjugates was further studied. The preferable hepatoprotective activities of decapeptide IVTNWDDMEK-ribose MRPs indicated that these MRPs could be potentially utilized as food antioxidants or additives in the production of nutritional foods.


Assuntos
Produtos Finais de Glicação Avançada , Reação de Maillard , Peptídeos , Substâncias Protetoras , Ribose , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Peptídeos/farmacologia , Substâncias Protetoras/química , Ribose/química , Ribose/farmacologia , Espectrometria de Massas em Tandem
10.
Talanta ; 232: 122409, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074399

RESUMO

Cadmium contamination is a severe food safety risk for human health. Herein, a long afterglow "off-on" phosphorescent aptasensor was developed based on phosphorescence resonance energy transfer (PRET) for the detection of Cd2+ in complex samples which minimizes the interference of background fluorescence. In this scheme, initially the phosphorescence of Cd2+-binding aptamer conjugated long afterglow nanoparticles (Zn2GeO4:Mn) was quenched by black hole quencher 1 (BHQ1) modified complementary DNA. Upon encountering of Cd2+, the aptamer interacted with Cd2+ and the complementary DNA with BHQ1 was released, leading to phosphorescence recovery. The content of Cd2+ could be quantified by the intensity of phosphorescence recovery with 100 µs gate time (which eliminated the sample autofluorescence) with a linear relationship between 0.5 and 50 µg L-1 and a limit of detection (LOD) of 0.35 µg L-1. This method was successfully demonstrated for Cd2+ detection in drinking water and yesso scallop samples. The "off-on" phosphorescent aptasensor based on PRET of long afterglow nanomaterials could be an effective tool for Cd2+ detection in food samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Cádmio , Transferência de Energia , Humanos , Limite de Detecção
11.
J Sci Food Agric ; 101(4): 1554-1561, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32869299

RESUMO

BACKGROUND: Phospholipids, the main lipid component in marine shellfish, mainly comprise glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE). GPC and GPE in marine shellfish, especially scallop, carry n-3 long-chain polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), although different types of glycerophospholipids (GP) have different health benefits on human health. Moreover, different GP subclasses such as GPC and GPE have different oxidative susceptibilities in complex food systems. The present study compared the oxidative susceptibilities of GPC and GPE in dried scallop during storage by high-performance liquid chromatography-tandem mass spectrometry and kinetic models, and also investigated the effects of natural phenolic antioxidant on their susceptibilities. RESULTS: The results showed that GPC and GPE molecular species (carrying EPA or DHA) contents in samples continuously reduced during storage at two different temperatures. The first-order kinetic model better reflected the changes of GPC and GPE molecular species (carrying EPA or DHA) in samples than the zero-order kinetic model during storage. According to the oxidation rate (k) obtained from first-order kinetic models, GPE possessed a greater oxidation rate than GPC during storage. Moreover, the results showed that antioxidants of bamboo leaves (AOB, polar polyphenolic antioxidants) significantly decreased the oxidation rates of GPC and GPE molecular species (carrying EPA or DHA) in samples during storage, and GPC could be more effectively protected by AOB compared to GPE. CONCLUSION: The present study provides a practical method for accurately evaluating the oxidative susceptibility of different phospholipid classes in complex food systems. © 2020 Society of Chemical Industry.


Assuntos
Pectinidae/química , Fosfatidiletanolaminas/química , Fosforilcolina/química , Alimentos Marinhos/análise , Animais , Armazenamento de Alimentos , Cinética , Músculo Esquelético/química , Oxirredução
12.
J Agric Food Chem ; 68(32): 8545-8556, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32686932

RESUMO

The aim of this study is to construct a pH- and reduction-responsive nanodrug delivery system to effectively deliver a ginsenoside (Rh2) and enhance its cytotoxicity against human hepatocarcinoma cells (HepG2). Here, pullulan polysaccharide was grafted by urocanic acid and α-lipoic acid (α-LA) to obtain a copolymer, α-LA-conjugated N-urocanyl pullulan (LA-URPA), which was expected to have pH and redox dual response. Then, the copolymer LA-URPA was used to encapsulate ginsenoside Rh2 to form Rh2 nanoparticles (Rh2 NPs). The results showed that Rh2 NPs exhibited an average size of 119.87 nm with a uniform spherical morphology. Of note, Rh2 NPs showed a high encapsulation efficiency of 86.00%. Moreover, Rh2 NPs possessed excellent pH/reduction dual-responsive drug release under acidic conditions (pH 5.5) and glutathione (GSH) stimulation with a low drug leakage of 14.8% within 96 h. Furthermore, Rh2 NPs with pH/reduction dual response had higher cytotoxicity than Rh2 after incubation with HepG2 cells for 72 h, indicating that Rh2 NPs had a longer circulation time. After the treatment with Rh2 NPs, the excessive increase of reactive oxygen species and the decrease of superoxide dismutase, glutathione (GSH), and mitochondrial membrane potential suggested that the mitochondrial pathway mediated by oxidative stress played a role in this Rh2 NP-induced apoptosis. In conclusion, this study provides a new strategy for improving the application of ginsenoside Rh2 in the food and pharmaceutical fields.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Ginsenosídeos/química , Ginsenosídeos/farmacologia , Nanopartículas/química , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Estresse Oxidativo/efeitos dos fármacos , Polímeros/química
13.
Food Funct ; 11(7): 6487-6495, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32628240

RESUMO

Endogenous nanoparticles produced during food processing have received considerable attention due to their unique physicochemical properties and potential safety risks. However, the bio-impact of endogenous nanoparticles on cell metabolism has not been fully studied. In this work, the effects of carbon dots (CDs) derived from the Maillard reaction of glucose and lysine on the cellular substance and energy metabolism were assessed using HepG2 cells as a model. When the HepG2 cells were incubated with 10.0 mg mL-1 of CDs, the mitochondrial membrane potential decreased significantly and the mitochondrial function was affected. The extracellular acidification rate and oxygen consumption rate were decreased in comparison to normal cells without CDs. The CDs blocked the glycolysis pathway by reducing the activities of key enzymes including phosphofructokinase and pyruvate kinase. The energy supply pathway of HepG2 cells changed from glycolysis to TCA cycle, but the increase of the TCA cycle flux could not meet the requirements for restoring cell proliferation. The increase of the compensatory flux in the TCA cycle may be the result of up-regulation of the metabolism of glucogenic amino acids and ketogenic amino acids, while lipid metabolism did not seem to be affected in this process.


Assuntos
Carbono/química , Metabolismo Energético/fisiologia , Reação de Maillard , Aminoácidos/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Glucose/metabolismo , Glicólise , Células Hep G2 , Humanos , Metabolismo dos Lipídeos , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Nanopartículas , Consumo de Oxigênio , Piruvato Quinase/metabolismo
14.
Food Chem ; 323: 126790, 2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32305808

RESUMO

Texture deterioration occurs in adductor muscle of scallop (Argopecten irradians) (AMS) after 5 d of cold storage. Principal component analysis indicated the texture deterioration resulted in significant decrease of hardness, springiness, adhesiveness and chewiness, but significantly increased cohesiveness. Endogenous proteases degraded structural proteins, among which cysteine proteases were mainly responsible for myofibrillar proteins (MPs) degradation, while serine proteases degraded both MPs and connective tissue proteins. Pearson coefficient analysis showed that texture indicators significantly correlated with structural protein indicators in AMS. To be more specific, the hardness, springiness, adhesiveness and chewiness negatively correlated with myofibrillar fragmentation index, soluble hydroxyproline (Hyp) and soluble glycosaminoglycans, but positively correlated with solubility of MPs and water holding capacity. Meanwhile, the cohesiveness positively correlated with soluble Hyp. The Taylor diagram and Hierarchical cluster analysis confirmed that the inhibitors of cysteine and serine proteases could effectively retard textural deterioration of AMS during 5 d of cold storage.

15.
Food Chem ; 295: 423-431, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31174778

RESUMO

Effects of natural phenolics on the shelf life of dried scallop adductor muscle predicted by accelerated shelf life testing (ALST) combined with Arrhenius model were investigated. This allows the food industries to reliably and rapidly determine the shelf life of dried shellfish species treated with antioxidants. The shelf life of dried scallop adductor muscle treated with antioxidants of bamboo leaves (AOB) and tea polyphenols (TP) was more than 1.70-fold that of dried control scallop adductor muscle. Thus, the highly nutritional value of dried scallop adductor muscle, based on its lipid constituents, is maintained during storage. OXITEST method further confirmed the improvement of lipid stability of antioxidant treated dried scallop adductor muscle by protecting polyunsaturated fatty acids, especially eicosapentaenoic and docosahexaenoic acids, against autoxidation. Moreover, the natural phenolics employed effectively limited lipid oxidation by breaking the autoxidative chain reaction and/or inhibiting free radical formation in dried scallop adductor muscle during storage.


Assuntos
Armazenamento de Alimentos , Lipídeos/química , Pectinidae/química , Polifenóis/química , Frutos do Mar , Animais , Antioxidantes/química , Camellia sinensis/química , Ácidos Graxos Insaturados/análise , Ácidos Graxos Insaturados/química , Liofilização , Músculo Esquelético/química , Valor Nutritivo , Oxirredução , Folhas de Planta/química , Carbamilação de Proteínas , Sasa/química
16.
J Agric Food Chem ; 67(25): 7174-7182, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31240931

RESUMO

Intake of endocrine-disrupting chemicals (EDCs) by humans could disturb the metabolism of hormones, induce cancer, and damage the liver and other organs. Phthalate acid esters (PAEs) and alkylphenols (APs) are important EDCs and environmental contaminants. With the increasing use of plastics and nonionic surfactants worldwide, PAEs and APs have entered environmental water and accumulated in edible fish, which are finally consumed by humans. In this study, a coated direct inlet probe (CDIP) based on an atmospheric solid analysis probe, which can rapidly and simultaneously extract both PAEs and APs in fish, was developed. Twelve PAEs and APs were quantified by using a stable-isotope-labeled internal standard. Standard curves of the PAEs and APs having correlation coefficients of R2 ≥ 0.9837 were obtained. The limit of detection of the PAEs and APs was distributed from 0.01 to 40 ng g-1. The relative recovery of the method was 78-120% between low, medium, and high spiked levels. Combined with principal component analysis, PAE- and AP-contaminated Carassius auratus from different habitats could be identified. Multiple sample analysis mode allowed the extraction of up to 12 samples at once, and the total analysis time (including sample pretreatment, extraction, and analysis time) was less than 10 min per sample, which indicates that CDIP is useful for rapid quantitative analysis.


Assuntos
Ésteres/análise , Carpa Dourada , Ensaios de Triagem em Larga Escala/métodos , Fenóis/análise , Ácidos Ftálicos/análise , Animais , Disruptores Endócrinos/análise , Disruptores Endócrinos/isolamento & purificação , Ésteres/isolamento & purificação , Carpa Dourada/metabolismo , Ensaios de Triagem em Larga Escala/instrumentação , Limite de Detecção , Fenóis/isolamento & purificação , Ácidos Ftálicos/isolamento & purificação , Extração em Fase Sólida
17.
Food Chem ; 286: 241-249, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30827602

RESUMO

This study aimed to determine the changes in the flavor profile during different operating units when making cold-smoked Spanish mackerel. Sensory evaluation and instrumental analysis of tenderness were applied to optimize the processing parameters. For the overall odor perception, distinct odor among fresh and processed samples could be distinguished using electronic nose (e-Nose). Purge-and-trap (P&T) extraction combined with gas chromatography-mass spectrometry (GC-MS) was used to identify volatile compounds. Alcohols were the major volatiles in Spanish mackerel over the whole processing, while 2-butanol was found in the highest concentration. Curing was an effective way to remove fishy odor. Drying decreased the concentration of volatiles, especially sulfur compounds. Odor formation in cold-smoked mackerel could be divided into four steps (curing, drying, cold smoking and heating) as a result of partial least squares discriminant analysis (PLS-DA).


Assuntos
Manipulação de Alimentos , Perciformes/metabolismo , Compostos Orgânicos Voláteis/análise , Álcoois/análise , Animais , Dessecação , Análise Discriminante , Nariz Eletrônico , Cromatografia Gasosa-Espectrometria de Massas , Análise dos Mínimos Quadrados , Odorantes/análise , Temperatura , Compostos Orgânicos Voláteis/química
18.
Food Funct ; 10(2): 1123-1131, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30724933

RESUMO

The effect of endogenous carbon nanoparticles from food sources is one of the hot topics in the current food research field. The relationship between the foodborne nanoparticle properties and the cytotoxic mechanism has been insufficiently studied. In this work, carbon dots (CDs) with strong fluorescence were found and purified from canned yellow croaker, and their cytotoxicity was investigated for the first time. The canned yellow croaker CDs are nearly spherical with a particle size distribution in the range of 1.8-5.8 nm. The fluorescence quantum yield of the isolated CDs is 9.7% and the maximum excitation wavelength is 340 nm, with a significant redshift phenomenon in fluorescence spectra. The surface elemental analysis showed that the composition of the canned yellow croaker CDs was C (76.42%), N (6.49%), and O (16.7%), and various functional groups are on the surface. The CDs have good stability in sodium chloride solution and the fluorescence intensity was stable within the pH value of 4 to 10. A strong fluorescence quenching effect was found upon the addition of Cu2+ and Fe3+ to the CD aqueous solution. The CDs can easily enter the interior of the live cells. Moreover, a concentration-dependent behavior of HepG2 cell viability was found when the cells were incubated with the canned yellow croaker CDs. Glycolysis and mitochondrial function analysis of HepG2 cells revealed that both the extracellular acidification rate and oxygen consumption rate significantly decreased in contrast to the normal level prior to the addition of CDs. In addition, the CDs significantly inhibited the glycolytic pathway by reducing the activity of key enzymes hexokinase and pyruvate kinase in the glycolytic pathway.


Assuntos
Carbono/química , Peixes , Corantes Fluorescentes , Glicólise , Animais , Carbono/toxicidade , Respiração Celular , Sobrevivência Celular/efeitos dos fármacos , Conservação de Alimentos , Células Hep G2 , Humanos
19.
Food Chem ; 281: 251-260, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30658755

RESUMO

Lipid hydrolysis and oxidation occurred in Argopecten irradians adductor muscle during hot air drying. Using an in vivo imaging system, we found that antioxidants of bamboo leaves (AOB) could diffuse into the adductor muscle upon marinating. Both tea polyphenols (TP) and AOB efficiently retarded lipid oxidation but had a slight effect on lipid hydrolysis during drying process. The in situ antioxidant mechanisms of AOB as well as TP were revealed, including quenching of free radicals detected by electron spin resonance, chelating metal ions determined by confocal laser scanning microscopy and inhibiting lipoxygenase. Less than 8% of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in AOB and TP marinated adductor muscle were decreased compared to more than 28% decrease in control adductor muscle during the drying process. Overall, these natural antioxidants, TP and AOB, efficiently maintained high nutritive value of adductor muscle, especially, their lipid quality.


Assuntos
Antioxidantes/análise , Dessecação , Manipulação de Alimentos , Pectinidae , Polifenóis/análise , Alimentos Marinhos/análise , Chá/química , Animais , Ácidos Docosa-Hexaenoicos/análise , Ácido Eicosapentaenoico/análise , Ácidos Graxos Insaturados/análise , Metabolismo dos Lipídeos , Valor Nutritivo , Fosforilcolina/análise , Extratos Vegetais/análise , Folhas de Planta/química , Sasa/química , Substâncias Reativas com Ácido Tiobarbitúrico/análise
20.
Food Funct ; 10(1): 49-60, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30566165

RESUMO

Emulsion-based delivery systems were structured by using scallop gonad protein isolates (SGPIs) as novel food-grade emulsifiers. The effects of carrier oil, including the long chain triglycerides (LCT) and medium chain triglycerides (MCT), on the bioaccessibility and cellular uptake of ß-carotene (BC) were investigated. Both LCT and MCT delivery systems remained stable at pH 7-8 but aggregated at lower pH values (3-6) according to the results of light scattering and microscopy measurements. LCT droplets fabricated within SGPIs were digested and released more slowly than MCT droplets during the simulated gastrointestinal tract digestion. The LCT emulsion showed higher BC bioaccessibility (65.5%) than the MCT emulsion (23.1%) as a result of the greater solubilization of BC in mixed micelles fabricated from long-chain fatty acids. Moreover, the LCT emulsion produced higher cellular uptake of BC as compared with the MCT emulsion in intestinal epithelial cells. These results demonstrated that SGPIs could be used as novel food-grade emulsifiers to protect lipophilic bioactive compounds in emulsion-based delivery systems, in which LCT is more suitable to encapsulate and deliver BC than MCT.


Assuntos
Emulsificantes/química , Gônadas/química , Pectinidae/química , Proteínas/química , Triglicerídeos/química , beta Caroteno/química , beta Caroteno/farmacologia , Animais , Disponibilidade Biológica , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Emulsificantes/isolamento & purificação , Emulsões/química , Emulsões/metabolismo , Emulsões/farmacologia , Feminino , Humanos , Proteínas/isolamento & purificação , beta Caroteno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA