Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Pharm Biotechnol ; 25(4): 499-509, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572608

RESUMO

Background: Salpingitis obstructive infertility (SOI) refers to infertility caused by abnormal conditions such as tubal adhesion and blockage caused by acute and chronic salpingitis. SOI has a serious impact on women's physical and mental health and family harmony, and it is a clinical problem that needs to be solved urgently.

Objective: The purpose of the present study was to explore the potential pharmacological mechanisms of the Yinjia tablets (Yin Jia Pian, YJP) on tubal inflammation.

Methods: Networks of YJP-associated targets and tubal inflammation-related genes were constructed through the STRING database. Potential targets and pathway enrichment analysis related to the therapeutic efficacy of YJP were identified using Cytoscape and Database for Annotation, Visualization, and Integrated Discovery (metascape). E. coli was used to establish a rat model of tubal inflammation and to validate the predictions of network pharmacology and the therapeutic efficacy of YJP. H&E staining was used to observe the pathological changes in fallopian tubes. TEM observation of the ultrastructure of the fallopian tubes. ELISA was used to detect the changes of IL-6 and TNF-α in fallopian tubes. Immunohistochemistry was used to detect the expression of ESR1. The changes of Bcl-2, ERK1/2, p-ERK1/2, MEK, p-MEK, EGFR, and p-EGFR were detected by western blot.

Results: Through database analysis, it was found that YJP shared 105 identical targets with the disease. Network pharmacology analysis showed that IL-6, TNF, and EGFR belong to the top 5 core proteins associated with salpingitis, and EGFR/MEK/ERK may be the main pathway involved. The E. coli-induced disease rat model of fallopian tube tissue showed damage, mitochondrial disruption, and increased levels of the inflammatory factors IL-6 and TNF-α. Tubal inflammatory infertility rats have increased expression of Bcl-2, p-ERK1/2, p-MEK, and p-EGFR, and decreased expression of ESR1. In vivo, experiments showed that YJP improved damage of tissue, inhibited shedding of tubal cilia, and suppressed the inflammatory response of the body. Furthermore, YJP inhibited EGFR/MEK/ERK signaling, inhibited the apoptotic protein Bcl-2, and upregulated ESR1.

Conclusion: This study revealed that YJP Reducing tubal inflammation and promoting tissue repair may be associated with inhibition of the EGFR/MEK/ERK signaling pathway.

.


Assuntos
Medicamentos de Ervas Chinesas , Infertilidade , Salpingite , Humanos , Feminino , Ratos , Animais , Salpingite/complicações , Salpingite/metabolismo , Salpingite/patologia , Sistema de Sinalização das MAP Quinases , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Escherichia coli/metabolismo , Farmacologia em Rede , Infertilidade/complicações , Transdução de Sinais , Inflamação/tratamento farmacológico , Receptores ErbB/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
2.
Heliyon ; 10(5): e27145, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38468973

RESUMO

"Golden-flower" Tibetan tea (GTT) is an innovative dark tea fermented via fungus Eurotium cristatum. To study GTT effects on alleviating the symptoms of type 1 diabetes mellitus (T1DM), GTT's extract (GTTE) was prepared. GTTE chemical compositions were analyzed via HPLC, pyrolysis-gas chromatography-mass (Py-GC-MS) spectrometry analysis, and chemistry analyses. GTTE effects on T1DM were explored on T1DM mice model induced by streptozotocin (STZ). GTTE was composed mainly of tea pigment theabrownin (TB) (49.18%), with high percentages of polysaccharide (16.93%), protein (10.15%), polyphenols (13.90%), amino acids (5.89%), caffeine (1.83%), and flavonoids (0.67%). Py-GC-MS results exhibited that GTTE constituted of phenols, lipids, sugars, and proteins. GTTE attenuated T1DM conditions of mice, relieved their liver and pancreatic injury, restored damaged islet cells, decreased oxidative stress by increasing superoxide dismutase (SOD) and catalase (CAT) levels, modulated cytokine expression leading to the decreasing pro-inflammatory cytokines TNF-α and IL-6, increased anti-inflammatory cytokines IL-4 to improve inflammatory responses, and optimized gut microbiota composition and structure based on high-throughput 16S rDNA sequencing, suggesting multi-channel anti-diabetes mechanisms.

3.
Nat Commun ; 15(1): 1462, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368405

RESUMO

Ethylene/α-olefin copolymers are produced in huge scale and widely used, but their after-use disposal has caused plastic pollution problems. Their chemical inertness made chemical re/upcycling difficult. Ideally, PE materials should be made de novo to have a circular closed-loop lifecycle. However, synthesis of circular ethylene/α-olefin copolymers, including high-volume, linear low-density PE as well as high-value olefin elastomers and block copolymers, presents a particular challenge due to difficulties in introducing branches while simultaneously installing chemical recyclability and directly using industrial ethylene and α-olefin feedstocks. Here we show that coupling of industrial coordination copolymerization of ethylene and α-olefins with a designed functionalized chain-transfer agent, followed by modular assembly of the resulting AB telechelic polyolefin building blocks by polycondensation, affords a series of ester-linked PE-based copolymers. These new materials not only retain thermomechanical properties of PE-based materials but also exhibit full chemical circularity via simple transesterification and markedly enhanced adhesion to polar surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA