Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 848: 157814, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35931170

RESUMO

Atmospheric black carbon (BC), primary and secondary brown carbon (BrCpri and BrCsec) are the light-absorbing carbonaceous aerosol components. The vertical changes in the BC and BrC distributions are not generally known. Here, we presented a study of the spectral light absorption properties, direct solar absorption, and potential source areas of BC and BrC at the foothill (375 m a.s.l.) and summit (2060 m a.s.l.) of Mt. Hua, China. More than tripled BC and BrC light absorption coefficient were observed at the foothill compared to the summit. The dominant carbonaceous light-absorbing was attributed to BC with the percentages of 77 % (foothill) and 79 % (summit), respectively. The light absorption coefficient and direct solar absorption of BrCpri were much higher than those of BrCsec at foothill, especially in winter. The enhancing contributions of BrCsec light absorption coefficient and direct solar absorption were observed with high RH and visibility at the summit. The light absorption properties of BC, BrCpri, and BrCsec may be attributed to the emissions, meteorological conditions, and photochemical oxidation. The inferred potential source spatial distributions of BC and BrCpri showed different patterns at the foothill and summit. The results underlined the primary emission effects (including BC and BrCpri) at the foothill and the importance of BrCsec at the summit, respectively.


Assuntos
Poluentes Atmosféricos , Carbono , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , China , Monitoramento Ambiental/métodos , Fuligem/análise
2.
Environ Sci Pollut Res Int ; 23(5): 4569-75, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26518000

RESUMO

The carbonaceous aerosol concentrations in coarse particle (PM10: Dp ≤ 10 µm, particulate matter with an aerodynamic diameter less than 10 µm), fine particle (PM2.5: Dp ≤ 2.5 µm), and ultrafine particle (PM0.133: Dp ≤ 0.133 µm) carbon fractions in a rural area were investigated during haze events in northwestern China. The results indicated that PM2.5 contributed a large fraction in PM10. OC (organic carbon) accounted for 33, 41, and 62 % of PM10, PM2.5, and PM0.133, and those were 2, 2.4, and 0.4 % for EC (elemental carbon) in a rural area, respectively. OC3 was more abundant than other organic carbon fractions in three PMs, and char dominated EC in PM10 and PM2.5 while soot dominated EC in PM0.133. The present study inferred that K(+), OP, and OC3 are good biomass burning tracers for rural PM10 and PM2.5, but not for PM0.133 during haze pollution. Our results suggest that biomass burning is likely to be an important contributor to rural PMs in northwestern China. It is necessary to establish biomass burning control policies for the mitigation of severe haze pollution in a rural area.


Assuntos
Poluentes Atmosféricos/análise , Aerossóis/análise , Poluentes Atmosféricos/química , Biomassa , Carbono/análise , China , Tamanho da Partícula , Material Particulado/análise , Fuligem/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA