Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IET Nanobiotechnol ; 17(4): 368-375, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37153957

RESUMO

Ellagic acid (EA), which is widely distributed in many foods, has been found to possess inhibitory activity against xanthine oxidase (XO). However, there is ongoing debate about the difference in XO inhibitory activity between EA and allopurinol. Additionally, the inhibitory kinetics and mechanism of EA on XO are still unclear. Herein, the authors systematically studied the inhibitory effects of EA on XO. The authors' findings showed that EA is a reversible inhibitor with mixed-type inhibition, and its inhibitory activity is weaker than allopurinol. Fluorescence quenching experiments suggested that the generation of EA-XO complex was exothermic and spontaneous. In silico analysis further confirmed that EA entered the XO catalytic centre. Furthermore, the authors verified the anti-hyperuricemia effect of EA in vivo. This study elucidates the inhibition kinetics and mechanism of EA on XO, and lays a theoretical foundation for the further development of drugs and functional foods containing EA for the treatment of hyperuricemia.


Assuntos
Alopurinol , Hiperuricemia , Humanos , Alopurinol/farmacologia , Alopurinol/uso terapêutico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Xantina Oxidase/metabolismo , Xantina Oxidase/uso terapêutico , Ácido Elágico/farmacologia , Ácido Elágico/uso terapêutico , Cinética , Hiperuricemia/tratamento farmacológico
2.
Cells ; 10(11)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34831174

RESUMO

Retinal pigment epithelium (RPE) replacement therapy is evolving as a feasible approach to treat age-related macular degeneration (AMD). In many preclinical studies, RPE cells are transplanted as a cell suspension into immunosuppressed animal eyes and transplant effects have been monitored only short-term. We investigated the long-term effects of human Induced pluripotent stem-cell-derived RPE (iPSC-RPE) transplants in an immunodeficient Royal College of Surgeons (RCS) rat model, in which RPE dysfunction led to photoreceptor degeneration. iPSC-RPE cultured as a polarized monolayer on a nanoengineered ultrathin parylene C scaffold was transplanted into the subretinal space of 28-day-old immunodeficient RCS rat pups and evaluated after 1, 4, and 11 months. Assessment at early time points showed good iPSC-RPE survival. The transplants remained as a monolayer, expressed RPE-specific markers, performed phagocytic function, and contributed to vision preservation. At 11-months post-implantation, RPE survival was observed in only 50% of the eyes that were concomitant with vision preservation. Loss of RPE monolayer characteristics at the 11-month time point was associated with peri-membrane fibrosis, immune reaction through the activation of macrophages (CD 68 expression), and the transition of cell fate (expression of mesenchymal markers). The overall study outcome supports the therapeutic potential of RPE grafts despite the loss of some transplant benefits during long-term observations.


Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Epitélio Pigmentado da Retina/transplante , Animais , Biomarcadores/metabolismo , Humanos , Implantes Experimentais , Luz , Polímeros , Ratos , Colículos Superiores/efeitos da radiação , Análise de Sobrevida , Visão Ocular/efeitos da radiação , Xilenos
3.
Front Neurosci ; 15: 752958, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764853

RESUMO

End-stage age-related macular degeneration (AMD) and retinitis pigmentosa (RP) are two major retinal degenerative (RD) conditions that result in irreversible vision loss. Permanent eye damage can also occur in battlefields or due to accidents. This suggests there is an unmet need for developing effective strategies for treating permanent retinal damages. In previous studies, co-grafted sheets of fetal retina with its retinal pigment epithelium (RPE) have demonstrated vision improvement in rat retinal disease models and in patients, but this has not yet been attempted with stem-cell derived tissue. Here we demonstrate a cellular therapy for irreversible retinal eye injuries using a "total retina patch" consisting of retinal photoreceptor progenitor sheets and healthy RPE cells on an artificial Bruch's membrane (BM). For this, retina organoids (ROs) (cultured in suspension) and polarized RPE sheets (cultured on an ultrathin parylene substrate) were made into a co-graft using bio-adhesives [gelatin, growth factor-reduced matrigel, and medium viscosity (MVG) alginate]. In vivo transplantation experiments were conducted in immunodeficient Royal College of Surgeons (RCS) rats at advanced stages of retinal degeneration. Structural reconstruction of the severely damaged retina was observed based on histological assessments and optical coherence tomography (OCT) imaging. Visual functional assessments were conducted by optokinetic behavioral testing and superior colliculus electrophysiology. Long-term survival of the co-graft in the rat subretinal space and improvement in visual function were observed. Immunohistochemistry showed that co-grafts grew, generated new photoreceptors and developed neuronal processes that were integrated into the host retina. This novel approach can be considered as a new therapy for complete replacement of a degenerated retina.

4.
Sci Rep ; 11(1): 6286, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737600

RESUMO

Age-related macular degeneration (AMD) is the primary cause of blindness in adults over 60 years of age, and clinical trials are currently assessing the therapeutic potential of retinal pigmented epithelial (RPE) cell monolayers on implantable scaffolds to treat this disease. However, challenges related to the culture, long-term storage, and long-distance transport of such implants currently limit the widespread use of adherent RPE cells as therapeutics. Here we report a xeno-free protocol to cryopreserve a confluent monolayer of clinical-grade, human embryonic stem cell-derived RPE cells on a parylene scaffold (REPS) that yields viable, polarized, and functional RPE cells post-thaw. Thawed cells exhibit ≥ 95% viability, have morphology, pigmentation, and gene expression characteristic of mature RPE cells, and secrete the neuroprotective protein, pigment epithelium-derived factor (PEDF). Stability under liquid nitrogen (LN2) storage has been confirmed through one year. REPS were administered immediately post-thaw into the subretinal space of a mammalian model, the Royal College of Surgeons (RCS)/nude rat. Implanted REPS were assessed at 30, 60, and 90 days post-implantation, and thawed cells demonstrate survival as an intact monolayer on the parylene scaffold. Furthermore, immunoreactivity for the maturation marker, RPE65, significantly increased over the post-implantation period in vivo, and cells demonstrated functional attributes similar to non-cryopreserved controls. The capacity to cryopreserve adherent cellular therapeutics permits extended storage and stable transport to surgical sites, enabling broad distribution for the treatment of prevalent diseases such as AMD.


Assuntos
Criopreservação/métodos , Células Epiteliais/transplante , Degeneração Macular/terapia , Epitélio Pigmentado da Retina/transplante , Manejo de Espécimes/métodos , Transplante de Células-Tronco/métodos , Animais , Diferenciação Celular , Linhagem Celular , Sobrevivência Celular , Modelos Animais de Doenças , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas do Olho/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Humanos , Fatores de Crescimento Neural/metabolismo , Polímeros , Ratos , Ratos Nus , Medicina Regenerativa/métodos , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Serpinas/metabolismo , Alicerces Teciduais , Resultado do Tratamento , Xilenos
5.
Graefes Arch Clin Exp Ophthalmol ; 256(11): 2113-2125, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30215097

RESUMO

PURPOSE: To create new immunodeficient Royal College of Surgeons (RCS) rats by introducing the defective MerTK gene into athymic nude rats. METHODS: Female homozygous RCS (RCS-p+/RCS-p+) and male nude rats (Hsd:RH-Foxn1mu, mutation in the foxn1 gene; no T cells) were crossed to produce heterozygous F1 progeny. Double homozygous F2 progeny obtained by crossing the F1 heterozygotes was identified phenotypically (hair loss) and genotypically (RCS-p+ gene determined by PCR). Retinal degenerative status was confirmed by optical coherence tomography (OCT) imaging, electroretinography (ERG), optokinetic (OKN) testing, superior colliculus (SC) electrophysiology, and by histology. The effect of xenografts was assessed by transplantation of human embryonic stem cell-derived retinal pigment epithelium (hESC-RPE) and human-induced pluripotent stem cell-derived RPE (iPS-RPE) into the eye. Morphological analysis was conducted based on hematoxylin and eosin (H&E) and immunostaining. Age-matched pigmented athymic nude rats were used as control. RESULTS: Approximately 6% of the F2 pups (11/172) were homozygous for RCS-p+ gene and Foxn1mu gene. Homozygous males crossed with heterozygous females resulted in 50% homozygous progeny for experimentation. OCT imaging demonstrated significant loss of retinal thickness in homozygous rats. H&E staining showed photoreceptor thickness reduced to 1-3 layers at 12 weeks of age. Progressive loss of visual function was evidenced by OKN testing, ERG, and SC electrophysiology. Transplantation experiments demonstrated survival of human-derived cells and absence of apparent immune rejection. CONCLUSIONS: This new rat animal model developed by crossing RCS rats and athymic nude rats is suitable for conducting retinal transplantation experiments involving xenografts.


Assuntos
Modelos Animais de Doenças , Células-Tronco Embrionárias Humanas/transplante , Síndromes de Imunodeficiência/terapia , Células-Tronco Pluripotentes Induzidas/transplante , Distrofias Retinianas/terapia , Epitélio Pigmentado da Retina/transplante , Animais , Sobrevivência Celular , Eletrorretinografia , Feminino , Técnicas de Genotipagem , Sobrevivência de Enxerto/fisiologia , Células-Tronco Embrionárias Humanas/fisiologia , Humanos , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/fisiopatologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Fenótipo , Ratos , Ratos Nus , Retina/fisiopatologia , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/fisiopatologia , Epitélio Pigmentado da Retina/fisiologia , Tomografia de Coerência Óptica , c-Mer Tirosina Quinase/genética
6.
Sci Transl Med ; 10(435)2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618560

RESUMO

Retinal pigment epithelium (RPE) dysfunction and loss are a hallmark of non-neovascular age-related macular degeneration (NNAMD). Without the RPE, a majority of overlying photoreceptors ultimately degenerate, leading to severe, progressive vision loss. Clinical and histological studies suggest that RPE replacement strategies may delay disease progression or restore vision. A prospective, interventional, U.S. Food and Drug Administration-cleared, phase 1/2a study is being conducted to assess the safety and efficacy of a composite subretinal implant in subjects with advanced NNAMD. The composite implant, termed the California Project to Cure Blindness-Retinal Pigment Epithelium 1 (CPCB-RPE1), consists of a polarized monolayer of human embryonic stem cell-derived RPE (hESC-RPE) on an ultrathin, synthetic parylene substrate designed to mimic Bruch's membrane. We report an interim analysis of the phase 1 cohort consisting of five subjects. Four of five subjects enrolled in the study successfully received the composite implant. In all implanted subjects, optical coherence tomography imaging showed changes consistent with hESC-RPE and host photoreceptor integration. None of the implanted eyes showed progression of vision loss, one eye improved by 17 letters and two eyes demonstrated improved fixation. The concurrent structural and functional findings suggest that CPCB-RPE1 may improve visual function, at least in the short term, in some patients with severe vision loss from advanced NNAMD.


Assuntos
Degeneração Macular/terapia , Células Cultivadas , Feminino , Atrofia Geográfica/terapia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/fisiologia , Humanos , Masculino , Estudos Prospectivos , Epitélio Pigmentado da Retina/citologia , Transplante de Células-Tronco , Tomografia de Coerência Óptica
7.
Graefes Arch Clin Exp Ophthalmol ; 254(8): 1553-1565, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27335025

RESUMO

PURPOSE: A subretinal implant termed CPCB-RPE1 is currently being developed to surgically replace dystrophic RPE in patients with dry age-related macular degeneration (AMD) and severe vision loss. CPCB-RPE1 is composed of a terminally differentiated, polarized human embryonic stem cell-derived RPE (hESC-RPE) monolayer pre-grown on a biocompatible, mesh-supported submicron parylene C membrane. The objective of the present delivery study was to assess the feasibility and 1-month safety of CPCB-RPE1 implantation in Yucatán minipigs, whose eyes are similar to human eyes in size and gross retinal anatomy. METHODS: This was a prospective, partially blinded, randomized study in 14 normal-sighted female Yucatán minipigs (aged 2 months, weighing 24-35 kg). Surgeons were blinded to the randomization codes and postoperative and post-mortem assessments were performed in a blinded manner. Eleven minipigs received CPCB-RPE1 while three control minipigs underwent sham surgery that generated subretinal blebs. All animals except two sham controls received combined local (Ozurdex™ dexamethasone intravitreal implant) and systemic (tacrolimus) immunosuppression or local immunosuppression alone. Correct placement of the CPCB-RPE1 implant was assessed by in vivo optical coherence tomography and post-mortem histology. hESC-RPE cells were identified using immunohistochemistry staining for TRA-1-85 (a human marker) and RPE65 (an RPE marker). As the study results of primary interest were nonnumerical no statistical analysis or tests were conducted. RESULTS: CPCB-RPE1 implants were reliably placed, without implant breakage, in the subretinal space of the minipig eye using surgical techniques similar to those that would be used in humans. Histologically, hESC-RPE cells were found to survive as an intact monolayer for 1 month based on immunohistochemistry staining for TRA-1-85 and RPE65. CONCLUSIONS: Although inconclusive regarding the necessity or benefit of systemic or local immunosuppression, our study demonstrates the feasibility and safety of CPCB-RPE1 subretinal implantation in a comparable animal model and provides an encouraging starting point for human studies.


Assuntos
Células-Tronco Embrionárias Humanas/transplante , Degeneração Macular/cirurgia , Epitélio Pigmentado da Retina/transplante , Transplante de Células-Tronco/métodos , Animais , Células Cultivadas , Modelos Animais de Doenças , Estudos de Viabilidade , Feminino , Humanos , Degeneração Macular/diagnóstico , Estudos Prospectivos , Epitélio Pigmentado da Retina/citologia , Suínos , Porco Miniatura , Tomografia de Coerência Óptica , Resultado do Tratamento
8.
Invest Ophthalmol Vis Sci ; 57(6): 2877-87, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27233037

RESUMO

PURPOSE: To determine the safety, survival, and functionality of human embryonic stem cell-derived RPE (hESC-RPE) cells seeded on a polymeric substrate (rCPCB-RPE1 implant) and implanted into the subretinal (SR) space of Royal College of Surgeons (RCS) rats. METHODS: Monolayers of hESC-RPE cells cultured on parylene membrane were transplanted into the SR space of 4-week-old RCS rats. Group 1 (n = 46) received vitronectin-coated parylene membrane without cells (rMSPM+VN), group 2 (n = 59) received rCPCB-RPE1 implants, and group 3 (n = 13) served as the control group. Animals that are selected based on optical coherence tomography screening were subjected to visual function assays using optokinetic (OKN) testing and superior colliculus (SC) electrophysiology. At approximately 25 weeks of age (21 weeks after surgery), the eyes were examined histologically for cell survival, phagocytosis, and local toxicity. RESULTS: Eighty-seven percent of the rCPCB-RPE1-implanted animals showed hESC-RPE survivability. Significant numbers of outer nuclear layer cells were rescued in both group 1 (rMSPM+VN) and group 2 (rCPCB-RPE1) animals. A significantly higher ratio of rod photoreceptor cells to cone photoreceptor cells was found in the rCPCB-RPE1-implanted group. Animals with rCPCB-RPE1 implant showed hESC-RPE cells containing rhodopsin-positive particles in immunohistochemistry, suggesting phagocytic function. Superior colliculus mapping data demonstrated that a significantly higher number of SC sites responded to light stimulus at a lower luminance threshold level in the rCPCB-RPE1-implanted group. Optokinetic data suggested both implantation groups showed improved visual acuity. CONCLUSIONS: These results demonstrate the safety, survival, and functionality of the hESC-RPE monolayer transplantation in an RPE dysfunction rat model.


Assuntos
Células-Tronco Embrionárias/citologia , Polímeros , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/patologia , Transplante de Células-Tronco , Animais , Contagem de Células , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Humanos , Ratos , Ratos Mutantes , Degeneração Retiniana/cirurgia , Epitélio Pigmentado da Retina/fisiopatologia , Tomografia de Coerência Óptica
9.
Prog Retin Eye Res ; 48: 1-39, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26113213

RESUMO

Age-related macular degeneration (AMD) is the leading cause of blindness among the elderly in developed countries. AMD is classified as either neovascular (NV-AMD) or non-neovascular (NNV-AMD). Cumulative damage to the retinal pigment epithelium, Bruch's membrane, and choriocapillaris leads to dysfunction and loss of RPE cells. This causes degeneration of the overlying photoreceptors and consequential vision loss in advanced NNV-AMD (Geographic Atrophy). In NV-AMD, abnormal growth of capillaries under the retina and RPE, which leads to hemorrhage and fluid leakage, is the main cause of photoreceptor damage. Although a number of drugs (e.g., anti-VEGF) are in use for NV-AMD, there is currently no treatment for advanced NNV-AMD. However, replacing dead or dysfunctional RPE with healthy RPE has been shown to rescue dying photoreceptors and improve vision in animal models of retinal degeneration and possibly in AMD patients. Differentiation of RPE from human embryonic stem cells (hESC-RPE) and from induced pluripotent stem cells (iPSC-RPE) has created a potentially unlimited source for replacing dead or dying RPE. Such cells have been shown to incorporate into the degenerating retina and result in anatomic and functional improvement. However, major ethical, regulatory, safety, and technical challenges have yet to be overcome before stem cell-based therapies can be used in standard treatments. This review outlines the current knowledge surrounding the application of hESC-RPE and iPSC-RPE in AMD. Following an introduction on the pathogenesis and available treatments of AMD, methods to generate stem cell-derived RPE, immune reaction against such cells, and approaches to deliver desired cells into the eye will be explored along with broader issues of efficacy and safety. Lastly, strategies to improve these stem cell-based treatments will be discussed.


Assuntos
Células-Tronco Embrionárias/citologia , Degeneração Macular/terapia , Epitélio Pigmentado da Retina , Transplante de Células-Tronco/métodos , Técnicas de Cultura de Células , Humanos , Células-Tronco Pluripotentes/citologia , Neovascularização Retiniana/terapia , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/transplante
10.
Cytokine ; 71(2): 394-6, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25496702

RESUMO

Retinal pigmented epithelium (RPE) secretes transforming growth factor beta 1 and 2 (TGF-ß1 and -ß2) cytokines involved in fibrosis, immune privilege, and proliferative vitreoretinopathy (PVR). Since RPE cell polarity may be altered in various disease conditions including PVR and age-related macular degeneration, we determined levels of TGF-ß from polarized human RPE (hRPE) and human stem cell derived RPE (hESC-RPE) as compared to nonpolarized cells. TGF-ß2 was the predominant isoform in all cell culture conditions. Nonpolarized cells secreted significantly more TGF-ß2 supporting the contention that loss of polarity of RPE in PVR leads to rise of intravitreal TGF-ß2. Active TGF-ß2, secreted mainly from apical side of polarized RPE, represented 6-10% of total TGF-ß2. In conclusion, polarity is an important determinant of TGF-ß2 secretion in RPE. Low levels of apically secreted active TGF-ß2 may play a role in the normal physiology of the subretinal space. Comparable secretion of TGF-ß from polarized hESC-RPE and hRPE supports the potential for hESC-RPE in RPE replacement therapies.


Assuntos
Retina/citologia , Epitélio Pigmentado da Retina/citologia , Células-Tronco/citologia , Fator de Crescimento Transformador beta2/metabolismo , Transplante de Células , Células Cultivadas , Células-Tronco Embrionárias/citologia , Humanos , Isoformas de Proteínas/metabolismo , Retina/imunologia , Fator de Crescimento Transformador beta1/metabolismo , Vitreorretinopatia Proliferativa/patologia
11.
Invest Ophthalmol Vis Sci ; 54(7): 5087-96, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23833067

RESUMO

PURPOSE: To evaluate cell survival and tumorigenicity of human embryonic stem cell-derived retinal pigment epithelium (hESC-RPE) transplantation in immunocompromised nude rats. Cells were transplanted as a cell suspension (CS) or as a polarized monolayer plated on a parylene membrane (PM). METHODS: Sixty-nine rats (38 male, 31 female) were surgically implanted with CS (n = 33) or PM (n = 36). Cohort subsets were killed at 1, 6, and 12 months after surgery. Both ocular tissues and systemic organs (brain, liver, kidneys, spleen, heart, and lungs) were fixed in 4% paraformaldehyde, embedded in paraffin, and sectioned. Every fifth section was stained with hematoxylin and eosin and analyzed histologically. Adjacent sections were processed for immunohistochemical analysis (as needed) using the following antibodies: anti-RPE65 (RPE-specific marker), anti-TRA-1-85 (human cell marker), anti-Ki67 (proliferation marker), anti-CD68 (macrophage), and anti-cytokeratin (epithelial marker). RESULTS: The implanted cells were immunopositive for the RPE65 and TRA-1-85. Cell survival (P = 0.006) and the presence of a monolayer (P < 0.001) of hESC-RPE were significantly higher in eyes that received the PM. Gross morphological and histological analysis of the eye and the systemic organs after the surgery revealed no evidence of tumor or ectopic tissue formation in either group. CONCLUSIONS: hESC-RPE can survive for at least 12 months in an immunocompromised animal model. Polarized monolayers of hESC-RPE show improved survival compared to cell suspensions. The lack of teratoma or any ectopic tissue formation in the implanted rats bodes well for similar results with respect to safety in human subjects.


Assuntos
Células-Tronco Embrionárias/transplante , Células Epiteliais/transplante , Degeneração Macular/cirurgia , Epitélio Pigmentado da Retina/transplante , Animais , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Proteínas do Olho/metabolismo , Feminino , Humanos , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Masculino , Ratos , Ratos Nus , Retina/metabolismo , Retina/patologia , Retina/cirurgia , Epitélio Pigmentado da Retina/metabolismo
12.
Ophthalmic Res ; 48(4): 186-91, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22868580

RESUMO

OBJECTIVE: To evaluate the feasibility of a new technique for the implantation of ultrathin substrates containing stem cell-derived retinal pigment epithelium (RPE) cells into the subretinal space of retina-degenerate Royal College of Surgeon (RCS) rats. METHODS: A platform device was used for the implantation of 4-µm-thick parylene substrates containing a monolayer of human embryonic stem cell-derived RPE (hESC-RPE). Normal Copenhagen rats (n = 6) and RCS rats (n = 5) were used for the study. Spectral-domain optical coherence tomography (SD-OCT) scanning and histological examinations were performed to confirm placement location of the implant. hESC-RPE cells attached to the substrate before and after implantation were evaluated using standard cell counting techniques. RESULTS: SD-OCT scanning and histological examination revealed that the substrates were precisely placed in the rat's subretinal space. The hESC-RPE cell monolayer that covered the surface of the substrate was found to be intact after implantation. Cell counting data showed that less than 2% of cells were lost from the substrate due to the implantation procedure (preimplantation count 2,792 ± 74.09 cells versus postimplantation count 2,741 ± 62.08 cells). Detailed microscopic examination suggested that the cell loss occurred mostly along the edges of the implant. CONCLUSION: With the help of this platform device, it is possible to implant ultrathin substrates containing an RPE monolayer into the rat's subretinal space. This technique can be a useful approach for stem cell-based tissue bioengineering techniques in retinal transplantation research.


Assuntos
Células-Tronco Embrionárias/citologia , Polímeros , Distrofias Retinianas/terapia , Epitélio Pigmentado da Retina/transplante , Transplante de Células-Tronco , Engenharia Tecidual , Alicerces Teciduais , Xilenos , Animais , Contagem de Células , Estudos de Viabilidade , Humanos , Ratos , Ratos Mutantes , Retina/patologia , Distrofias Retinianas/diagnóstico , Tomografia de Coerência Óptica
13.
Angiogenesis ; 15(2): 213-27, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22392094

RESUMO

Bone morphorgenetic protein (BMP)-4 has been shown to play a pivotal role in eye development; however, its role in mature retina or ocular angiogenic diseases is unclear. Activating downstream Smad signaling, BMP4 can be either pro-angiogenic or anti-angiogenic, depending on the context of cell types and associated microenvironment. In this study, we generated transgenic mice over-expressing BMP4 in retinal pigment epithelial (RPE) cells (Vmd2-Bmp4 Tg mice), and used the laser-induced choroidal neovascularization (CNV) model to study the angiogenic properties of BMP4 in adult eyes. Vmd2-Bmp4 Tg mice displayed normal retinal histology at 10 weeks of age when compared with age-matched wildtype mice. Over-expression of BMP4 in RPE in the transgenic mice was confirmed by real-time PCR and immunostaining. Elevated levels of Smad1,5 phosphorylation were found in BMP4 transgenic mice compared to wildype mice. Over-expression of BMP4 was associated with less severe CNV as characterized by fluorescein angiography, CNV volume measurement and histology. While control mice showed increased levels of vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP)-9 after laser injury, Vmd2-Bmp4 Tg showed no increase in either VEGF or MMP-9. Further, we found that TNF-induced MMP-9 secretion in vitro was reduced by pretreatment of RPE cells with BMP4. The inhibition of MMP-9 was Smad-dependent because BMP4 failed to repress TNF-induced MMP-9 expression when Smad1,5 was silenced by siRNA. In summary, our studies identified an anti-angiogenic role for BMP4 in laser-induced CNV, mediated by direct inhibition of MMP-9 and indirect inhibition of VEGF.


Assuntos
Proteína Morfogenética Óssea 4/biossíntese , Neovascularização de Coroide/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Bestrofinas , Proteína Morfogenética Óssea 4/genética , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Neovascularização de Coroide/etiologia , Neovascularização de Coroide/genética , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Lasers/efeitos adversos , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Transgênicos , Epitélio Pigmentado da Retina/patologia , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
14.
FASEB J ; 25(7): 2221-33, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21411747

RESUMO

Bone morphogenetic protein-4 (BMP4) may be involved in the molecular switch that determines which late form of age-related macular degeneration (AMD) an individual develops. BMP4 expression is high in retinal pigment epithelium (RPE) cells in late, dry AMD patients, while BMP4 expression is low in the wet form of the disease, characterized by choroidal neovascularization (CNV). Here, we sought to determine the mechanism by which BMP4 is down-regulated in CNV. BMP4 expression was decreased within laser-induced CNV lesions in mice at a time when tumor necrosis factor (TNF) expression was high (7 d postlaser) and was reexpressed in RPE when TNF levels declined (14 d postlaser). We found that TNF, an important angiogenic stimulus, significantly down-regulates BMP4 expression in cultured human fetal RPE cells, ARPE-19 cells, and RPE cells in murine posterior eye cup explants. We identified two specificity protein 1 (Sp1) binding sites in the BMP4 promoter that are required for basal expression of BMP4 and its down-regulation by TNF. Through c-Jun NH(2)-terminal kinase (JNK) activation, TNF modulates Sp1 phosphorylation, thus decreasing its affinity to the BMP4 promoter. The down-regulation of BMP4 expression by TNF in CNV and mechanisms established might be useful for defining novel targets for AMD therapy.


Assuntos
Proteína Morfogenética Óssea 4/genética , Regulação da Expressão Gênica , Degeneração Macular/genética , Fator de Necrose Tumoral alfa/genética , Animais , Sítios de Ligação/genética , Western Blotting , Proteína Morfogenética Óssea 4/metabolismo , Linhagem Celular , Células Cultivadas , Neovascularização de Coroide/etiologia , Neovascularização de Coroide/genética , Neovascularização de Coroide/metabolismo , Regulação para Baixo , Feminino , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lasers/efeitos adversos , Degeneração Macular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição Sp1/metabolismo , Transcrição Gênica , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
15.
Invest Ophthalmol Vis Sci ; 52(3): 1573-85, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21087957

RESUMO

PURPOSE: Human embryonic stem cell-derived RPE (hES-RPE) transplantation is a promising therapy for atrophic age-related macular degeneration (AMD); however, future therapeutic approaches may consider co-transplantation of hES-RPE with retinal progenitor cells (RPCs) as a replacement source for lost photoreceptors. The purpose of this study was to determine the effect of polarization of hES-RPE monolayers on their ability to promote survival of RPCs. METHODS: The hES-3 cell line was used for derivation of RPE. Polarization of hES-RPE was achieved by prolonged growth on permeable inserts. RPCs were isolated from 16- to 18-week-gestation human fetal eyes. ELISA was performed to measure pigment epithelium-derived factor (PEDF) levels from conditioned media. RESULTS: Pigmented RPE-like cells appeared as early as 4 weeks in culture and were subcultured at 8 weeks. Differentiated hES-RPE had a normal chromosomal karyotype. Phenotypically polarized hES-RPE cells showed expression of RPE-specific genes. Polarized hES-RPE showed prominent expression of PEDF in apical cytoplasm and a marked increase in secretion of PEDF into the medium compared with nonpolarized culture. RPCs grown in the presence of supernatants from polarized hES-RPE showed enhanced survival, which was ablated by the presence of anti-PEDF antibody. CONCLUSIONS: hES-3 cells can be differentiated into functionally polarized hES-RPE cells that exhibit characteristics similar to those of native RPE. On polarization, hES-RPE cells secrete high levels of PEDF that can support RPC survival. These experiments suggest that polarization of hES-RPE would be an important feature for promotion of RPC survival in future cell therapy for atrophic AMD.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteínas do Olho/metabolismo , Fatores de Crescimento Neural/metabolismo , Epitélio Pigmentado da Retina/citologia , Serpinas/metabolismo , Animais , Western Blotting , Bovinos , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Sobrevivência Celular/fisiologia , Técnicas de Cocultura , Ensaio de Imunoadsorção Enzimática , Perfilação da Expressão Gênica , Idade Gestacional , Humanos , Marcação In Situ das Extremidades Cortadas , Cariotipagem , Microscopia Confocal , Fagocitose/fisiologia , Epitélio Pigmentado da Retina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Segmento Externo da Célula Bastonete/fisiologia
16.
Invest Ophthalmol Vis Sci ; 49(9): 4078-88, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18450591

RESUMO

PURPOSE: To investigate the role of connective tissue growth factor (CTGF) in the pathogenesis of proliferative vitreoretinopathy (PVR). METHODS: Expression of CTGF was evaluated immunohistochemically in human PVR membranes, and the accumulation of CTGF in the vitreous was evaluated by ELISA. The effects of CTGF on type I collagen mRNA and protein expression in RPE were assayed by real-time PCR and ELISA, and migration was assayed with a Boyden chamber assay. Experimental PVR was induced in rabbits with vitreous injection of RPE cells plus rhCTGF; injection of RPE cells plus platelet derived-growth factor, with or without rhCTGF, or by injection of RPE cells infected with an adenoviral vector that expressed CTGF. RESULTS: CTGF was highly expressed in human PVR membranes and partially colocalized with cytokeratin-positive RPE cells. Treatment of RPE with rhCTGF stimulated migration with a peak response at 50 ng/mL (P < 0.05) and increased expression of type I collagen (P < 0.05). There was a prominent accumulation of the N-terminal half of CTGF in the vitreous of patients with PVR. Intravitreous injection of rhCTGF alone did not produce PVR, whereas such injections into rabbits with mild, nonfibrotic PVR promoted the development of dense, fibrotic epiretinal membranes. Similarly, intravitreous injection of RPE cells infected with adenoviral vectors that overexpress CTGF induced fibrotic PVR. Experimental PVR was associated with increased CTGF mRNA in PVR membranes and accumulation of CTGF half fragments in the vitreous. CONCLUSIONS: The results identify CTGF as a major mediator of retinal fibrosis and potentially an effective therapeutic target for PVR.


Assuntos
Proteínas Imediatamente Precoces/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Epitélio Pigmentado Ocular/fisiologia , Animais , Técnicas de Cultura de Células , Fator de Crescimento do Tecido Conjuntivo , Ensaio de Imunoadsorção Enzimática , Feminino , Feto , Fibrose , Idade Gestacional , Humanos , Epitélio Pigmentado Ocular/citologia , Epitélio Pigmentado Ocular/patologia , Gravidez , Coelhos , Doenças Retinianas/patologia , Doenças Retinianas/fisiopatologia , Corpo Vítreo/patologia , Corpo Vítreo/fisiologia , Corpo Vítreo/fisiopatologia
17.
J Bone Miner Res ; 20(6): 1032-40, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15883644

RESUMO

UNLABELLED: The recognized structural proteins of the enamel matrix are amelogenin, ameloblastin, and enamelin. While a large volume of data exists showing that amelogenin self-assembles into multimeric units referred to as nanospheres, other reports of enamel matrix protein-protein interactions are scant. We believe that each of these enamel matrix proteins must interact with other organic components of ameloblasts and the enamel matrix. Likely protein partners would include integral membrane proteins and additional secreted proteins. INTRODUCTION: The purpose of this study was to identify and catalog additional proteins that play a significant role in enamel formation. MATERIALS AND METHODS: We used the yeast two-hybrid assay to identify protein partners for amelogenin, ameloblastin, and enamelin. Once identified, RT-PCR was used to assess gene transcription of these newly identified and potential "enamel" proteins in ameloblast-like LS8 cells. RESULTS: In the context of this yeast assay, we identified a number of secreted proteins and integral membrane proteins that interact with amelogenin, ameloblastin, and enamelin. Additionally, proteins whose functions range from the inhibition of soft tissue mineralization, calcium ion transport, and phosphorylation events have been identified as protein partners to these enamel matrix proteins. For each protein identified using this screening strategy, future studies are planned to confirm this physiological relationship to biomineralization in vivo. CONCLUSION: Identifying integral membrane proteins of the secretory surface of ameloblast cells (Tomes' processes) and additional enamel matrix proteins, based on their abilities to interact with the most abundant enamel matrix proteins, will better define the molecular mechanisms of enamel formation at its most rudimentary level.


Assuntos
Esmalte Dentário/metabolismo , Transcrição Gênica , Ameloblastos/metabolismo , Amelogenina , Animais , Antígenos CD/biossíntese , Biglicano , Proteínas Sanguíneas/metabolismo , Calnexina/biossíntese , Calnexina/metabolismo , Membrana Celular/metabolismo , DNA Complementar/metabolismo , Proteínas do Esmalte Dentário/química , Proteínas do Esmalte Dentário/metabolismo , Dentina/metabolismo , Proteínas da Matriz Extracelular , Camundongos , Modelos Biológicos , Fases de Leitura Aberta , Fosforilação , Glicoproteínas da Membrana de Plaquetas/biossíntese , Ligação Proteica , Proteoglicanas/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tetraspanina 30 , Fatores de Tempo , Técnicas do Sistema de Duplo-Híbrido , alfa-2-Glicoproteína-HS , alfa-Fetoproteínas/metabolismo
18.
Cells Tissues Organs ; 176(1-3): 7-16, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14745231

RESUMO

The secreted, full-length amelogenin is the dominant protein of the forming enamel organ. As enamel mineralization progresses, amelogenin is quickly subjected to proteolytic activity, and eliminated from the enamel environment. Mature enamel contains only traces of structural proteins, including enamelin and the sheath protein ameloblastin. In addition, a proteolytic fragment of amelogenin, known as the tyrosine-rich amelogenin peptide or TRAP, is present in low but isolatable quantities. By overexpressing TRAP during enamel development we sought to determine if such overexpression would result in structural alterations to the mature enamel. We reasoned that overexpressing a protein associated with enamel maturation, at an inappropriate developmental stage, would result in alterations to the enamel protein assembly and hence, alterations in enamel structure and morphology. As judged by transmission and scanning electron microscopy, the enamel formed by overexpressing TRAP showed little morphological differences when compared to the enamel of normal nontransgenic animals. Based on scanning electron-microscopic images, there was modest hypomineralization evident in the interrod enamel of the TRAP-overexpressing animals. However, this finding was inconsistent and inconsequential from a structural and functional perspective. From these results it appears that additional amounts of TRAP protein in the immature enamel matrix are not sufficient to alter the properties of the enamel extracellular matrix to an extent that the hierarchical structure of mature enamel is altered.


Assuntos
Proteínas do Esmalte Dentário/genética , Esmalte Dentário/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Ameloblastos/química , Ameloblastos/citologia , Ameloblastos/metabolismo , Amelogênese/genética , Amelogênese/fisiologia , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Esmalte Dentário/anatomia & histologia , Esmalte Dentário/ultraestrutura , Proteínas do Esmalte Dentário/análise , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Imuno-Histoquímica , Incisivo/química , Incisivo/metabolismo , Incisivo/ultraestrutura , Mandíbula/anatomia & histologia , Mandíbula/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Microscopia Eletrônica , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Oligopeptídeos , Peptídeos/genética , Peptídeos/imunologia , Plasmídeos/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA