Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39090353

RESUMO

Exosomal long noncoding RNAs (lncRNAs), which are highly expressed in tumor-derived exosomes, regulate various cellular behaviors such as cell proliferation, metastasis, and glycolysis by facilitating intercellular communication. Here, we explored the role and regulatory mechanism of tumor-derived exosomal lncRNAs in pituitary adenomas (PA). We isolated exosomes from PA cells, and performed in vitro and in vivo assays to examine their effect on the proliferation, metastasis, and glycolysis of PA cells. In addition, we conducted RNA pull-down, RNA immunoprecipitation, co-immunoprecipitation, and ubiquitination assays to investigate the downstream mechanism of exosomal AFAP1-AS1. Exosomes from PA cells augmented the proliferation, mobility, and glycolysis of PA cells. Moreover, AFAP1-AS1 was significantly enriched in these exosomes and stimulated the growth, migration, invasion, and glycolysis of PA cells in vitro, as well as tumor metastasis in vivo. It also enhanced the binding affinity between Hu antigen R (HuR) and SMAD-specific E3 ubiquitin protein ligase 1 (SMURF1), resulting in HuR ubiquitination and degradation accompanied by enhanced expression of hexokinase 2 (HK2) and pyruvate kinase M2 (PKM2). Moreover, HuR overexpression alleviated the exosomal AFAP1-AS1-mediated promotion of growth, metastasis, and glycolysis effects. These findings indicate that tumor-derived exosomal AFAP1-AS1 modulated SMURF1-mediated HuR ubiquitination and degradation to upregulate HK2 and PKM2 expression, thereby enhancing PA cell growth, metastasis, and glucose metabolism. This suggests targeting exosomal AFAP1-AS1 may be a potential strategy for the treatment of PA.

2.
Food Chem Toxicol ; 182: 114186, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951342

RESUMO

MiR-7-5p has been demonstrated to inhibit tumorigenesis by limiting tumor cell proliferation, migration and invasion. However, its role in countering hydroquinone (HQ)-induced malignant phenotype of TK6 cells has remained unclear. The present study aimed to investigate whether miR-7-5p overexpression could restrain the malignant phenotype in TK6 cells exposed to HQ. The results displayed that HQ suppressed the expression of miR-7-5p and promoted cell cycle progression. Further investigations confirmed that miR-7-5p could decelerate the cell cycle progression by targeting Rb after acute HQ exposure. Through the regulation of the Rb/E2F1 signaling pathway, the overexpression of miR-7-5p mitigated HQ-induced malignant phenotype in TK6 cells by impeding cell cycle progression. In conclusion, miR-7-5p overexpression appears to be involved in HQ-induced malignant transformation by suppressing Rb/E2F1 signaling pathway, resulting in a deceleration of the cell cycle progression.


Assuntos
Hidroquinonas , MicroRNAs , Humanos , Hidroquinonas/toxicidade , MicroRNAs/metabolismo , Divisão Celular , Ciclo Celular , Proliferação de Células , Transformação Celular Neoplásica , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica
3.
Environ Toxicol ; 38(10): 2344-2351, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37347496

RESUMO

Hydroquinone (HQ) is an important metabolites of benzene in the body, and it has been found to result in cellular DNA damage, mutation, cell cycle imbalance, and malignant transformation. The JNK1 signaling pathway plays an important role in DNA damage repair. In this study, we focused on whether the JNK1 signaling pathway is involved in the HQ-induced cell cycle abnormalities and the underlying mechanism. The results showed that HQ induced abnormal progression of the cell cycle and initiated the JNK1 signaling pathway. We further confirmed that JNK1 suppression decelerated the cell cycle progression through inhibiting pRb/E2F1 signaling pathway and triggering p53/p21 pathway. Therefore, we concluded that JNK1 might be involved in HQ-induced malignant transformation associated with activating pRb/E2F1 and inhibiting p53/p21 signaling pathway which resulting in accelerating the cell cycle progression.


Assuntos
Hidroquinonas , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/metabolismo , Hidroquinonas/toxicidade , Divisão Celular , Transdução de Sinais
4.
Ecotoxicol Environ Saf ; 249: 114389, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508791

RESUMO

Hydroquinone (HQ), a well-known carcinogenic agent, induces oxidative stress, cell cycle arrest, apoptosis, and malignant transformation. As an antioxidant actor, the nuclear factor erythroid 2-related factor 2 (Nrf2) drives adaptive cellular protection in response to oxidative stress. The human lymphoblastoid cell line (TK6 cells) is widely used as a model for leukemia researches. In the present study, we focused on exploring whether Nrf2 regulatory cell cycle in TK6 cells upon HQ treatment and the underlying mechanisms. The results showed that the cell cycle arrest in TK6 cells induced by hydroquinone was accompanied by activation of the Nrf2 signaling pathway. We further clarified that Nrf2 loss accelerated cell cycle progression from G0/G1 to S and G2/M phases and promoted ROS production by downregulating the expression of SOD and GSH. Western blotting analysis indicated that Nrf2 regulated cell cycle progression via p16/pRb signaling pathways. Therefore, we conclude that Nrf2 is engaged in HQ-induced cell cycle arrest as well through p16/pRb and antioxidant enzymes.


Assuntos
Pontos de Checagem do Ciclo Celular , Hidroquinonas , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Humanos , Apoptose , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Hidroquinonas/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais
5.
Med Image Anal ; 68: 101914, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33285479

RESUMO

Hepatocellular carcinoma (HCC), as the most common type of primary malignant liver cancer, has become a leading cause of cancer deaths in recent years. Accurate segmentation of HCC lesions is critical for tumor load assessment, surgery planning, and postoperative examination. As the appearance of HCC lesions varies greatly across patients, traditional manual segmentation is a very tedious and time-consuming process, the accuracy of which is also difficult to ensure. Therefore, a fully automated and reliable HCC segmentation system is in high demand. In this work, we present a novel hybrid neural network based on multi-task learning and ensemble learning techniques for accurate HCC segmentation of hematoxylin and eosin (H&E)-stained whole slide images (WSIs). First, three task-specific branches are integrated to enlarge the feature space, based on which the network is able to learn more general features and thus reduce the risk of overfitting. Second, an ensemble learning scheme is leveraged to perform feature aggregation, in which selective kernel modules (SKMs) and spatial and channel-wise squeeze-and-excitation modules (scSEMs) are adopted for capturing the features from different spaces and scales. Our proposed method achieves state-of-the-art performance on three publicly available datasets, with segmentation accuracies of 0.797, 0.923, and 0.765 in the PAIP, CRAG, and UHCMC&CWRU datasets, respectively, which demonstrates its effectiveness in addressing the HCC segmentation problem. To the best of our knowledge, this is also the first work on the pixel-wise HCC segmentation of H&E-stained WSIs.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Neoplasias Hepáticas/diagnóstico por imagem , Redes Neurais de Computação , Coloração e Rotulagem
6.
World Neurosurg ; 130: e888-e898, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31299308

RESUMO

BACKGROUND: We previously found that AFAP1-AS1 regulates the cell growth of pituitary tumor cells; however, the mechanism still remains unclear. Here, we investigated whether AFAP1-AS1 acts as a competing endogenous RNA of miR-103a-3p to regulate pituitary adenoma growth via the PI3K/AKT pathway. METHODS: The bind between AFAP1-AS1 and rno-miR-103a-3p was measured by luciferase reporter assay, and rno-miR-103a-3p expression was measured by quantitative reverse transcription polymerase chain reaction. Proliferation, cell cycle, and apoptosis were measured by cell counting kit 8 and flow cytometry. Rat growth hormone (GH) and prolactin (PRL) levels in culture supernatant of GH3 and MMQ cells were measured by enzyme-linked immunosorbent assay. RESULTS: AFAP1-AS1 binds to rno-miR-103a-3p in rat pituitary adenoma cells. Additionally, rno-miR-103a-3p overexpression suppressed rat pituitary adenoma cell proliferation, induced cell apoptosis, arrested cell cycle in the G/S phase, reduced GH and PLR secretion, and inhibited the PI3K/AKT signaling pathway. Activated PI3K/AKT signaling pathway revised the effect of rno-miR-103a-3p overexpression on proliferation and GH and PLR secretion. Coexpression of both si-AFAP1-AS1 and rno-miR-103a-3p inhibitor promoted cell proliferation and cell cycle progression, reduced cell apoptosis, enhanced GH and PLR secretion, and activated the PI3K/AKT signaling pathway in rat pituitary adenoma cells. CONCLUSION: We found that AFAP1-AS1 and miR-103a-3p could be a potential therapeutic target for pituitary adenoma.


Assuntos
Adenoma/metabolismo , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Hipofisárias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/metabolismo , Adenoma/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Morfolinas/farmacologia , Neoplasias Hipofisárias/patologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA