Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Rejuvenation Res ; 25(5): 223-232, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35876435

RESUMO

Senile thymus atrophy is an important factor leading to decreased immune function. Repairing the atrophic thymus tissue structure, rebuilding immune function, and replenishing the number of exogenous stem cells may be ideal methods. In this study, bone marrow mesenchymal stem cells were intravenously infused into elderly macaques. We found that thymus volume was substantially increased, some thymus tissue regeneration was observed, the degree of thymus tissue fibrosis decreased, collagen fiber deposition decreased, cortical and medulla structures emerged gradually, the number of apoptotic cells decreased significantly, and the expression of apoptosis-related proteins decreased. For the effects of stem cell therapy on aging-related genes, we performed transcriptomic analysis of thymus tissue. The results show the expression pattern of the tissue transcriptome tended to be similar to the thymus expression pattern in young macaques compared with the elderly group, reverse aging-related proteins. Based on the results, it is suggested that stem cell therapy is an ideal method to prevent or reverse the aging of the thymus.


Assuntos
Células-Tronco Mesenquimais , Rejuvenescimento , Animais , Macaca , Timo , Colágeno
2.
Stem Cell Res Ther ; 12(1): 156, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648583

RESUMO

BACKGROUND: Age-associated lung tissue degeneration is a risk factor for lung injury and exacerbated lung disease. It is also the main risk factor for chronic lung diseases (such as COPD, idiopathic pulmonary fibrosis, cancer, among others). So, it is particularly important to find new anti-aging treatments. METHODS: We systematically screened and evaluated elderly senile multiple organ dysfunction macaque models to determine whether BMMSCs inhibited lung tissue degeneration. RESULTS: The average alveolar area, mean linear intercept (MLI), and fibrosis area in the elderly macaque models were significantly larger than in young rhesus monkeys (p < 0.05), while the capillary density around the alveoli was significantly low than in young macaque models (p < 0.05). Intravenous infusion of BMMSCs reduced the degree of pulmonary fibrosis, increased the density of capillaries around the alveoli (p < 0.05), and the number of type II alveolar epithelium in elderly macaques (p < 0.05). In addition, the infusion reduced lung tissue ROS levels, systemic and lung tissue inflammatory levels, and Treg cell ratio in elderly macaque models (p < 0.05). Indirect co-cultivation revealed that BMMSCs suppressed the expression of senescence-associated genes, ROS levels, apoptosis rate of aging type II alveolar epithelial cells (A549 cells), and enhanced their proliferation (p < 0.05). CONCLUSIONS: BMMSC treatment inhibited age-associated lung tissue degeneration.


Assuntos
Fibrose Pulmonar Idiopática , Células-Tronco Mesenquimais , Animais , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/terapia , Pulmão , Macaca , Alvéolos Pulmonares
3.
Cancer Sci ; 103(8): 1434-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22534012

RESUMO

To develop a molecular probe for MRI detection of human tumor telomerase reverse transcriptase (hTERT) mRNA expression. Uniformly phosphorothioate-modified hTERT antisense oligonucleotide (ASON) homing hTERT mRNA was labeled with gadolinium (Gd) through the bifunctional chelator 1,4,7, 10-tetraazacyclododecane-N, N', N'', N'''-tetraacetic acid (DOTA) stirred within 45 minutes at 60 °C. The Gd labeled probes were characterized in vitro. The cellular uptake rate and biodistribution of (99m) Tc-DOTA-ASON was measured instead of that of Gd-DOTA-ASON. A549 lung adenocarcinoma model was established in BALB/c nude mice and Gd-DOTA-ASON was injected intraperitoneally and MR images were acquired using 7.0T Micro-MRI (Bruker Biospec, Ettlingen, Germany) at different time points. Immunohistochemical analysis of telomerase activity of each xenograft was operated two days after in vivo imaging. The binding efficiency of Gd-DOTA-ASON reached as high as 71.7 ± 4.5% (n = 6). Gd-DOTA-ASON displayed perfect stability in fresh human serum at 37 °C for 24 h. Compared with normal lung cells, A549 cells showed an obviously higher uptake of (99m) Tc-DOTA-ASON than that of lung cells (10.5 ± 2.7% vs. 4.8 ± 2.6%, P < 0.05). The signal intensity of A549 xenografts can be enhanced by Gd-DOTA-ASON and the signal to noise ratio (SNR) of tumor to muscle reached 2.37 and maintained a relatively high level within 6 h after injection. The activity of hTERT in A549 tumors can be suppressed by Gd-DOTA-ASON in pathological slices. The results of this study show that Gd-DOTA-ASON can be a promising intracellular MR contrast probe for targeting telomerase-positive carcinomas.


Assuntos
Adenocarcinoma/diagnóstico , Neoplasias Pulmonares/diagnóstico , Imageamento por Ressonância Magnética/métodos , Oligonucleotídeos Antissenso , Telomerase/metabolismo , Adenocarcinoma de Pulmão , Animais , Linhagem Celular Tumoral , Compostos Heterocíclicos , Humanos , Camundongos , Camundongos Nus , Compostos Organometálicos , RNA Mensageiro/metabolismo , Razão Sinal-Ruído , Telomerase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA