Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 132: 111927, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38555820

RESUMO

Acute myeloid leukemia (AML) presents as a remarkably heterogeneous disease, and the intricate role of various T cell subtypes, including T helper (Th) cells and regulatory T (Treg) cells, in immune dysregulation and the promotion of leukemia cell proliferation and survival is not yet fully understood. In this study, we conducted a comparative analysis of transcriptome profiles in T cells derived from bone marrow samples of three leukemia patients, both before and after treatment, as well as from a relapse sample. This analysis was facilitated through the utilization of single-cell RNA sequencing. The T cell population was subcategorized into CD4 + T cells and CD8 + T cells. Intriguingly, the composition of CD8 + T cells exhibited a relatively stable pattern before and after treatment, while a substantial difference in composition was observed in CD4 + T cells, notably in Th17 and Treg cell populations. Pseudotime trajectory analysis of CD4 + T cell clusters provided further insights into the augmented transition between Th17-like and Treg cells in AML. This transition was characterized by changes in the expression of key genes, including STAT3, CCR6, IL23R, FOXP3, and CTLA4, along their developmental path. An increased cell-to-cell interaction between AML blast cells and all types of T cells appeared to contribute to the restoration of normal T cell proportions. Notably, the LGALS9-CD45 and LGALS9-CD44 pathways emerged as pivotal interactions between blast cells and Treg cells. Our findings unveil an imbalanced differentiation pattern in CD4 + T cells and elucidate the immunosuppressive profiles linked to leukemia cells, thereby enhancing our understanding of CD4 + T cell functionality in the context of AML.


Assuntos
Leucemia Mieloide Aguda , Análise de Célula Única , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/genética , Linfócitos T Reguladores/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD4-Positivos/imunologia , Masculino , Transcriptoma , Pessoa de Meia-Idade , Feminino , Perfilação da Expressão Gênica
2.
Eur J Haematol ; 112(6): 870-878, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38342613

RESUMO

Acute myeloid leukemia (AML) is distinguished by clonal growth of myeloid precursor cells, which impairs normal hematopoiesis. Minimal residual disease (MRD) refers to the residual leukemia cells that persist after chemotherapy. Patients who test positive for MRD have a higher likelihood of experiencing a recurrence, regardless of the specific chemotherapy approach used. Multi-parameter flow cytometry (MFC), polymerase chain reaction (PCR), and next-generation sequencing (NGS) are commonly employed techniques for identifying MRD. In the context of AML, patients are frequently monitored for measurable residual disease via multi-parameter flow cytometry (MFC-MRD). In order to explore recent advancements in AML and MRD diagnosis, an extensive search of the PubMed database was conducted, focusing on relevant research in the past 20 years. This review aims to examine various MRD monitoring methods, the optimal time points for assessment, as well as different specimen types used. Additionally, it underscores the significance of MFC-MRD assessment in guiding the treatment of elderly AML.


Assuntos
Gerenciamento Clínico , Citometria de Fluxo , Leucemia Mieloide Aguda , Neoplasia Residual , Neoplasia Residual/diagnóstico , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Idoso , Sequenciamento de Nucleotídeos em Larga Escala , Prognóstico , Imunofenotipagem , Fatores Etários
3.
Eur J Haematol ; 110(5): 480-489, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36692074

RESUMO

TP53 mutation is a frequent tumor suppressor mutation and a critical prognostic indicator across studies in many malignant tumors including hematologic malignancies. However, the role of TP53 and its correlative pathway in acute myeloid leukemia (AML) is enigmatic, which may provide possible emerging strategies with the potential to improve outcomes in AML. Accordingly, we focus not only on the TP53 mutation but also on the underlying mechanisms of the mutated TP53 signal pathway. While it is now generally accepted that TP53 mutations are widely associated with a dismal prognosis, resistance to chemotherapy, and high incidence of relapse and refractory AML. Hereby, the current therapeutics targeting TP53 mutant AML are summarized in this review. This will address emerging TP53-based therapeutic approaches, facilizing the TP53-targeted treatment options.


Assuntos
Leucemia Mieloide Aguda , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Mutação , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Prognóstico , Transdução de Sinais
4.
Cancer Cell Int ; 22(1): 195, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590355

RESUMO

BACKGROUND: Arsenic trioxide (ATO) is highly effective in acute promyelocytic leukemia (APL) patients, but it fails to show satisfactory efficacy in other acute myeloid leukemia (AML) patients with non-APL subtypes. Different from the APL cells, most non-APL AML cells express low levels of the ATO transporter Aquaporin-9 (AQP9) protein, making them less sensitive to ATO treatment. Recently, we found that granulocyte colony stimulating factor (G-CSF) can upregulate the expression of AQP9. We hypothesized that the pretreatment with G-CSF may enhance the antitumor effect of ATO in non-APL AML cells. In addition, we aimed to elucidate the underlying mechanisms by which G-CSF upregulates the expression of AQP9. METHODS: Non-APL AML cell lines including THP-1 and HL-60 were pretreated with or without G-CSF (100 ng/ml) for 24 h, followed by the treatment with ATO (2 µM) for 48 h. Cell morphology was observed under the microscope after Wright-Giemsa staining. Flow cytometry was performed to evaluate the cell apoptosis levels. The intracellular concentrations of ATO were determined by atomic fluorescence spectrometry. The mRNA and protein expression were respectively measured by quantitative reverse transcription PCR (RT-qPCR) and western blotting. Target genes were knocked down by transfection with small interfering RNA (siRNA), or overexpressed by transfection with overexpression plasmids. The cell line derived xenograft mouse model was established to confirm the results of the in vitro experiments. RESULTS: Compared with using ATO alone, the combination of G-CSF with ATO induced the cell apoptosis more dramatically. G-CSF upregulated the expression of AQP9 and enhanced the intracellular concentrations of ATO in AML cells. When AQP9 was overexpressed, it markedly enhanced the cytotoxic activity of ATO. On the other hand, when AQP9 was knocked down, it profoundly attenuated the combinational effect. Moreover, we found that the upregulation of AQP9 by G-CSF depends on the transcription factor CCAAT enhancer binding protein beta (CEBPB). We also demonstrated that the combination of G-CSF and ATO significantly inhibited tumor growth in the xenograft mouse model. CONCLUSIONS: The combination of G-CSF and ATO may be a potential therapeutic strategy for AML patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA