Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
2.
Transl Oncol ; 49: 102048, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39186862

RESUMO

The progression of hepatocellular carcinoma (HCC) is influenced by disrupted metabolic processes, presenting challenges in prognostic outcomes. Hepatocellular carcinoma (HCC), a leading cause of cancer-related mortality, is closely associated with metabolic reprogramming and stem cell-like properties in liver cancer stem cells (LCSCs). This study explored the potential molecular mechanisms by which tLyP-1-modified extracellular vesicles (EVs) delivering CTCF shRNA (tLyp-1-EV-shCTCF) regulate mitochondrial DNA methylation-induced glycolytic metabolic reprogramming and LCSC self-renewal. Through a series of methods, including Western blot, nanoparticle tracking analysis, and immunofluorescence, we demonstrated the successful delivery and internalization of tLyp-1-EV in HCC cells. Our results identified SALL3 as a critical factor underexpressed in HCC and LCSCs, while CTCF was overexpressed. Overexpression of SALL3 inhibited LCSC self-renewal and immune evasion by blocking the CTCF-DNMT3A interaction, thus repressing DNMT3A methyltransferase activity and subsequent mitochondrial DNA methylation-mediated glycolytic metabolic reprogramming. In vivo experiments further supported these findings, showing that tLyp-1-EV-shCTCF treatment significantly reduced tumor growth by upregulating SALL3 expression, thereby inhibiting glycolytic metabolic reprogramming and enhancing the immune response against HCC cells. This study provides novel insights into the role of SALL3 and mitochondrial DNA methylation in HCC progression, offering potential therapeutic targets for combating HCC and its stem cell-like properties.

3.
EBioMedicine ; 103: 105098, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608514

RESUMO

BACKGROUND: The widespread involvement of tumor-infiltrating B cells highlights their potential role in tumor behavior. However, B cell heterogeneity in PDAC remains unexplored. Studying TIL-Bs in PDAC aims to identify new treatment strategies. METHODS: We performed single-cell RNA sequencing to study the heterogeneity of B cells in PDAC. The prognostic and immunologic value of the identified CD38+ B cells was explored in FUSCC (n = 147) and TCGA (n = 176) cohorts. Flow cytometry was conducted to characterize the relationship between CD38+ B cells and other immune cells, as well as their phenotypic features. In vitro and in vivo experiments were performed to assess the putative effect of CD38+ B cells on antitumor immunity. FINDINGS: The presence of CD38+ B cells in PDAC was associated with unfavorable clinicopathological features and poorer overall survival (p < 0.001). Increased infiltration of CD38+ B cells was accompanied by reduced natural killer (NK) cells (p = 0.021) and increased regulatory T cells (p = 0.016). Molecular profiling revealed high expression of IL-10, IL-35, TGF-ß, GZMB, TIM-1, CD5 and CD21, confirming their putative regulatory B cell-like features. Co-culture experiments demonstrated suppression of NK cell cytotoxicity by CD38+ B cell-derived IL-10 (p < 0.001). Finally, in vivo experiments suggested adoptive transfer of CD38+ B cells reduced antitumor immunity and administration of a CD38 inhibitor hampered tumor growth (p < 0.001). INTERPRETATION: We discovered regulatory B cell-like CD38+ B cell infiltration as an independent prognostic factor in PDAC. The use of CD38 inhibitor may provide new possibilities for PDAC immunotherapy. FUNDING: This study was supported by the National Natural Science Foundation of China (U21A20374), Shanghai Municipal Science and Technology Major Project (21JC1401500), Scientific Innovation Project of Shanghai Education Committee (2019-01-07-00-07-E00057), Special Project for Clinical Research in the Health Industry of the Shanghai Health Commission (No. 20204Y0265) and Natural Science Foundation of Shanghai (23ZR1479300).


Assuntos
ADP-Ribosil Ciclase 1 , Carcinoma Ductal Pancreático , Humanos , ADP-Ribosil Ciclase 1/metabolismo , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/terapia , Animais , Camundongos , Prognóstico , Antígenos CD19/metabolismo , Antígenos CD19/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidade , Feminino , Masculino , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Linhagem Celular Tumoral , Microambiente Tumoral/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Pessoa de Meia-Idade , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Terapia de Imunossupressão
4.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 617-624, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660875

RESUMO

OBJECTIVE: To establish a mesenchymal stem cell(MSC)-based in vitro cell model for the evaluation of mouse bone marrow acute graft-versus-host disease (aGVHD). METHODS: Female C57BL/6N mice aged 6-8 weeks were used as bone marrow and lymphocyte donors, and female BALB/c mice aged 6-8 weeks were used as aGVHD recipients. The recipient mouse received a lethal dose (8.0 Gy,72.76 cGy/min) of total body γ irradiation, and injected with donor mouse derived bone marrow cells (1×107/mouse) in 6-8 hours post irradiation to establish a bone marrow transplantation (BMT) mouse model (n=20). In addition, the recipient mice received a lethal dose (8.0 Gy,72.76 cGy/min) of total body γ irradiation, and injected with donor mouse derived bone marrow cells (1×107/mouse) and spleen lymphocytes (2×106/mouse) in 6-8 hours post irradiation to establish a mouse aGVHD model (n=20). On the day 7 after modeling, the recipient mice were anesthetized and the blood was harvested post eyeball enucleation. The serum was collected by centrifugation. Mouse MSCs were isolated and cultured with the addition of 2%, 5%, and 10% recipient serum from BMT group or aGVHD group respectively. The colony-forming unit-fibroblast(CFU-F) experiment was performed to evaluate the potential effects of serums on the self-renewal ability of MSC. The expression of CD29 and CD105 of MSC was evaluated by immunofluorescence staining. In addition, the expression of self-renewal-related genes including Oct-4, Sox-2, and Nanog in MSC was detected by real-time fluorescence quantitative PCR(RT-qPCR). RESULTS: We successfully established an in vitro cell model that could mimic the bone marrow microenvironment damage of the mouse with aGVHD. CFU-F assay showed that, on day 7 after the culture, compared with the BMT group, MSC colony formation ability of aGVHD serum concentrations groups of 2% and 5% was significantly reduced (P < 0.05); after the culture, at day 14, compared with the BMT group, MSC colony formation ability in different aGVHD serum concentration was significantly reduced (P < 0.05). The immunofluorescence staining showed that, compared with the BMT group, the proportion of MSC surface molecules CD29+ and CD105+ cells was significantly dereased in the aGVHD serum concentration group (P < 0.05), the most significant difference was at a serum concentration of 10% (P < 0.001, P < 0.01). The results of RT-qPCR detection showed that the expression of the MSC self-renewal-related genes Oct-4, Sox-2, and Nanog was decreased, the most significant difference was observed at an aGVHD serum concentration of 10% (P < 0.01,P < 0.001,P < 0.001). CONCLUSION: By co-culturing different concentrations of mouse aGVHD serum and mouse MSC, we found that the addition of mouse aGVHD serum at different concentrations impaired the MSC self-renewal ability, which providing a new tool for the field of aGVHD bone marrow microenvironment damage.


Assuntos
Transplante de Medula Óssea , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro , Células-Tronco Mesenquimais , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Animais , Camundongos , Feminino , Células-Tronco Mesenquimais/citologia , Células da Medula Óssea/citologia , Microambiente Celular , Medula Óssea , Ratos
5.
Environ Pollut ; 346: 123672, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428796

RESUMO

Dredging wastewater (DW) from aquaculture ponds is a major disturbance factor in mangrove management, and its effects on the greenhouse gas (GHG) fluxes from mangrove sediment remain controversial. In this study, we investigated GHG (N2O, CH4, and CO2) fluxes from mangrove sediment at typical aquaculture pond-mangrove sites that were stimulated by DW discharged for different input histories and from different farm types. The GHG fluxes exhibited differing cumulative effects with increasing periods of DW input. The N2O and CH4 fluxes from mangrove sediment that received DW inputs for 17 y increased by ∼10 and ∼1.5 times, respectively, whereas the CO2 flux from mangrove sediment that received DW inputs for 11 y increased by ∼1 time. The effect of DW from shrimp ponds on the N2O flux was significantly larger than those of DW from fish/crab ponds and razor clam ponds. Moreover, the total global warming potentials (GWPs) at the field sites with DW inputs increased by 29-129% of which the CO2 flux was the main contributor to the GWP (85-96%). N2O as a proportion of CO2-equivalent flux increased from 2% to 12%, indicating that N2O was an important contributor to the increase in GWP. Overall, DW increased the GHG fluxes from mangrove sediments, indicating that the contribution of mangroves to climate warming was enhanced under DW input. It also implies that the carbon sequestration potential of mangrove sediments may be threatened to some extent. Therefore, future assessments of the carbon sequestration capacity of mangroves at regional or global scales should consider this phenomenon.


Assuntos
Braquiúros , Gases de Efeito Estufa , Animais , Estuários , Águas Residuárias , Rios , Dióxido de Carbono/análise , Monitoramento Ambiental , Aquicultura , China , Metano/análise , Óxido Nitroso/análise , Áreas Alagadas
6.
Heliyon ; 10(1): e23163, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163190

RESUMO

Integrin subunit α3 (ITGA3) is a member of the integrin family and interacts with extracellular matrix proteins. However, there have been few reports regarding the role of ITGA3 in papillary thyroid cancer. The expression levels of ITGA3 were firstly analyzed by bioinformatics tools and in vitro experiments, followed by evaluating its prognostic significance in papillary thyroid cancer patients using Kaplan-Meier, receiver operating characteristic, and Cox regression analyses. Then, cBioportal and GSCA databases were applied to evaluate genetic alterations of ITGA3. Functional enrichment analysis was conducted and the upstream miRNAs of ITGA3 were determined. The results showed that the ITGA3 mRNA and protein levels were higher in the papillary thyroid cancer group than those in the normal group (all P < 0.05). Moreover, ITGA3 performed well in distinguishing the recurrence-free survival (RFS) status and served as an independent prognostic factor of papillary thyroid cancer patients (P < 0.01). Besides, significant relations between ITGA3 and genetic alterations were observed (FDR <0.01). Functional enrichment analysis indicated ECM-receptor interaction and cell adhesion molecules were the shared regulatory pathways. Moreover, ITGA3 might be the target gene of hsa-miR-3129, hsa-miR-181d, hsa-miR-181b, hsa-miR-199a, and hsa-miR-199b. Of note, the ITGA3 mRNA level was reduced after has-miR-199b-3p/5p was overexpressed. In conclusion, ITGA3 could be a reliable biomarker and have potential value in predicting the RFS status of papillary thyroid cancer patients.

7.
Mar Pollut Bull ; 198: 115846, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029672

RESUMO

The combined influences of species selection (Avicennia marina, Kandelia obovata) and site elevation (BSL site, below local mean sea level; ASL site, above local mean sea level) on the greenhouse gas fluxes (nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2)) from restored mangrove soils are investigated in this study. Compared with the A. marina forest, soils in the K. obovata forest at ASL site have higher CO2 fluxes, while higher N2O fluxes in the K. obovata forest are found at BSL site. The highest CH4 fluxes are found at BSL site in the A. marina forest. At each elevation site, the A. marina forest has lower CO2-equivalent fluxes and carbon release in the form of carbon-containing gases. The results suggest that A. marina should be selected for mangrove restoration to minimize carbon release and reduce influence of greenhouse gas fluxes on the global greenhouse effect.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Solo , Dióxido de Carbono/análise , Monitoramento Ambiental , Estações do Ano , Metano/análise , Óxido Nitroso/análise
8.
Stem Cells ; 42(4): 360-373, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38153253

RESUMO

Recent investigations have shown that the necroptosis of tissue cells in joints is important in the development of osteoarthritis (OA). This study aimed to investigate the potential effects of exogenous skeletal stem cells (SSCs) on the necroptosis of subchondral osteoblasts in OA. Human SSCs and subchondral osteoblasts isolated from human tibia plateaus were used for Western blotting, real-time PCR, RNA sequencing, gene editing, and necroptosis detection assays. In addition, the rat anterior cruciate ligament transection OA model was used to evaluate the effects of SSCs on osteoblast necroptosis in vivo. The micro-CT and pathological data showed that intra-articular injections of SSCs significantly improved the microarchitecture of subchondral trabecular bones in OA rats. Additionally, SSCs inhibited the necroptosis of subchondral osteoblasts in OA rats and necroptotic cell models. The results of bulk RNA sequencing of SSCs stimulated or not by tumor necrosis factor α suggested a correlation of SSCs-derived tumor necrosis factor α-induced protein 3 (TNFAIP3) and cell necroptosis. Furthermore, TNFAIP3-derived from SSCs contributed to the inhibition of the subchondral osteoblast necroptosis in vivo and in vitro. Moreover, the intra-articular injections of TNFAIP3-overexpressing SSCs further improved the subchondral trabecular bone remodeling of OA rats. Thus, we report that TNFAIP3 from SSCs contributed to the suppression of the subchondral osteoblast necroptosis, which suggests that necroptotic subchondral osteoblasts in joints may be possible targets to treat OA by stem cell therapy.


Assuntos
Osteoartrite , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Animais , Humanos , Ratos , Necroptose , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/terapia , Osteoblastos/metabolismo , Osteoblastos/patologia , Células-Tronco/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/farmacologia
9.
Oncogene ; 42(47): 3491-3502, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37828220

RESUMO

Cell senescence deters the activation of various oncogenes. Induction of senescence is, therefore, a potentially effective strategy to interfere with vital processes in tumor cells. Sphingosine-1-phosphate receptor 1 (S1PR1) has been implicated in various cancer types, including ovarian cancer. The mechanism by which S1PR1 regulates ovarian cancer cell senescence is currently elusive. In this study, we demonstrate that S1PR1 was highly expressed in human ovarian cancer tissues and cell lines. S1PR1 deletion inhibited the proliferation and migration of ovarian cancer cells. S1PR1 deletion promoted ovarian cancer cell senescence and sensitized ovarian cancer cells to cisplatin chemotherapy. Exposure of ovarian cancer cells to sphingosine-1-phosphate (S1P) increased the expression of 3-phosphatidylinositol-dependent protein kinase 1 (PDK1), decreased the expression of large tumor suppressor 1/2 (LATS1/2), and induced phosphorylation of Yes-associated protein (p-YAP). Opposite results were obtained in S1PR1 knockout cells following pharmacological inhibition. After silencing LATS1/2 in S1PR1-deficient ovarian cancer cells, senescence was suppressed and S1PR1 expression was increased concomitantly with YAP expression. Transcriptional regulation of S1PR1 by YAP was confirmed by chromatin immunoprecipitation. Accordingly, the S1PR1-PDK1-LATS1/2-YAP pathway regulates ovarian cancer cell senescence and does so through a YAP-mediated feedback loop. S1PR1 constitutes a druggable target for the induction of senescence in ovarian cancer cells. Pharmacological intervention in the S1PR1-PDK1-LATS1/2-YAP signaling axis may augment the efficacy of standard chemotherapy.


Assuntos
Neoplasias Ovarianas , Proteínas Quinases , Feminino , Humanos , Receptores de Esfingosina-1-Fosfato/genética , Neoplasias Ovarianas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Senescência Celular/genética , Proliferação de Células/genética
10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(5): 1588-1593, 2023.
Artigo em Chinês | MEDLINE | ID: mdl-37846722

RESUMO

Hematopoietic stem cell transplantation (HSCT) is one of the effective options for the treatment of irradiation-induced injury on hematopoiesis, malignant hematological diseases, and numerous benign severe hematopathy. However, the cellular composition of the graft for HSCT, as well as the significant events of transplanted HSCs in receipients including HSC homing, engraftment, differentiation, remains to be further elucidated. In recent years, with advances in single-cell techniques, the hematopoiesis has been decoding at single cell scale. In addition, single-cell RNA sequencing (scRNA-seq) has been used in the evaluation of hematopoietic dynamics post HSCT, which may be helpful to improve HSCT protocols and clinical outcomes. Hence, the recent advances of evaluating HSCT at single cell scale and the directions worthy paying attention to in the field have been reviewed briefly.

11.
Stem Cell Res Ther ; 14(1): 253, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37752608

RESUMO

BACKGROUND: Though articular cartilage stem cell (ACSC)-based therapies have been demonstrated to be a promising option in the treatment of diseased joints, the wide variety of cell isolation, the unknown therapeutic targets, and the incomplete understanding of the interactions of ACSCs with diseased microenvironments have limited the applications of ACSCs. METHODS: In this study, the human ACSCs have been isolated from osteoarthritic articular cartilage by advantage of selection of anatomical location, the migratory property of the cells, and the combination of traumatic injury, mechanical stimuli and enzymatic digestion. The protective effects of ACSC infusion into osteoarthritis (OA) rat knees on osteochondral tissues were evaluated using micro-CT and pathological analyses. Moreover, the regulation of ACSCs on osteoarthritic osteoclasts and the underlying mechanisms in vivo and in vitro were explored by RNA-sequencing, pathological analyses and functional gain and loss experiments. The one-way ANOVA was used in multiple group data analysis. RESULTS: The ACSCs showed typical stem cell-like characteristics including colony formation and committed osteo-chondrogenic capacity. In addition, intra-articular injection into knee joints yielded significant improvement on the abnormal subchondral bone remodeling of osteoarthritic rats. Bioinformatic and functional analysis showed that ACSCs suppressed osteoarthritic osteoclasts formation, and inflammatory joint microenvironment augmented the inhibitory effects. Further explorations demonstrated that ACSC-derived tumor necrosis factor alpha-induced protein 3 (TNFAIP3) remarkably contributed to the inhibition on osteoarhtritic osteoclasts and the improvement of abnormal subchondral bone remodeling. CONCLUSION: In summary, we have reported an easy and reproducible human ACSC isolation strategy and revealed their effects on subchondral bone remodeling in OA rats by releasing TNFAIP3 and suppressing osteoclasts in a diseased microenvironment responsive manner.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Humanos , Animais , Ratos , Osteoartrite do Joelho/terapia , Osteoclastos , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Células-Tronco , Remodelação Óssea
12.
J Radiat Res ; 64(6): 880-892, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37697698

RESUMO

On the basis of the previous research, the Traditional Chinese Medicine theory was used to improve the drug composition for gastrointestinal acute radiation syndrome (GI-ARS). The purpose of this study was to study the therapeutic mechanism of Liangxue-Guyuan-Yishen decoction (LGYD) on GI-ARS and to provide a new scheme for the treatment of radiation injury. Here, we investigated the effects of LGYD on intestinal stem cells (ISCs) in a GI-ARS rat model. Rat health and survival and the protective efficacy of LGYD on the intestines were analyzed. The active principles in LGYD were detected using liquid chromatography-mass spectrometry (LC-MS). ISC proliferation, intestinal epithelial tight junction (TJ) protein expression and regulatory pathways were explored using immunohistochemistry, western blotting (WB) and reverse transcription quantitative polymerase chain reaction (RT-qPCR), respectively. Involvement of the WNT and MEK/ERK pathways in intestinal recovery was screened using network pharmacology analysis and validated by WB and RT-qPCR. LGYD administration significantly improved health and survival in GI-ARS rats. Pathological analysis showed that LGYD ameliorated radiation-induced intestinal injury and significantly promoted LGR5+ stem cell regeneration in the intestinal crypts, upregulated TJ protein, and accelerated crypt reconstruction in the irradiated rats. LC-MS revealed ≥13 constituents that might contribute to LGYD's protective effects. Collectively, LGYD can promote crypt cell proliferation and ISCs after radiation damage, the above effect may be related to WNT and MEK/ERK pathway.


Assuntos
Síndrome Aguda da Radiação , Ratos , Animais , Síndrome Aguda da Radiação/tratamento farmacológico , Intestinos/patologia , Células-Tronco/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Mucosa Intestinal
13.
Front Immunol ; 14: 1202298, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554330

RESUMO

Diabetic nephropathy (DN) is the most prevalent microvascular consequence of diabetes and has recently risen to the position of the world's second biggest cause of end-stage renal diseases. Growing studies suggest that oxidative stress (OS) responses are connected to the advancement of DN. This study aimed to developed a novel diagnostic model based on OS-related genes. The differentially expressed oxidative stress-related genes (DE-OSRGs) experiments required two human gene expression datasets, which were given by the GEO database (GSE30528 and GSE96804, respectively). The potential diagnostic genes were identified using the SVM-RFE assays and the LASSO regression model. CIBERSORT was used to determine the compositional patterns of the 22 different kinds of immune cell fraction seen in DN. These estimates were based on the combined cohorts. DN serum samples and normal samples were both subjected to RT-PCR in order to investigate the degree to which certain genes were expressed. In this study, we were able to locate 774 DE-OSRGs in DN. The three marker genes (DUSP1, PRDX6 and S100A8) were discovered via machine learning on two different machines. The high diagnostic value was validated by ROC tests, which focused on distinguishing DN samples from normal samples. The results of the CIBERSORT study suggested that DUSP1, PRDX6, and S100A8 may be associated to the alterations that occur in the immunological microenvironment of DN patients. Besides, the results of RT-PCR indicated that the expression of DUSP1, PRDX6, and S100A8 was much lower in DN serum samples compared normal serum samples. The diagnostic value of the proposed model was likewise verified in our cohort, with an area under the curve of 9.946. Overall, DUSP1, PRDX6, and S100A8 were identified to be the three diagnostic characteristic genes of DN. It's possible that combining these genes will be effective in diagnosing DN and determining the extent of immune cell infiltration.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/genética , Algoritmos , Bioensaio , Calgranulina A , Aprendizado de Máquina , Estresse Oxidativo/genética
14.
J Proteome Res ; 22(10): 3254-3263, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37639699

RESUMO

Systemic sclerosis (SSc) is a systemic autoimmune disorder that leads to vasculopathy and tissue fibrosis. A lack of reliable biomarkers has been a challenge for clinical diagnosis of the disease. We employed a protein array-based approach to identify and validate SSc-specific autoantibodies. Phase I involved profiled autoimmunity using human proteome microarray (HuProt arrays) with 90 serum samples: 40 patients with SSc, 30 patients diagnosed with autoimmune diseases, and 20 healthy subjects. In Phase II, we constructed a focused array with candidates identified antigens and used this to profile a much larger cohort comprised of serum samples. Finally, we used a western blot analysis to validate the serum of validated proteins with high signal values. Bioinformatics analysis allowed us to identify 113 candidate autoantigens that were significantly associated with SSc. This two-phase strategy allowed us to identify and validate anti-small nuclear ribonucleoprotein polypeptide A (SNRPA) as a novel SSc-specific serological biomarker. The observed positive rate of anti-SNRPA antibody in patients with SSc was 11.25%, which was significantly higher than that of any disease control group (3.33%) or healthy controls (1%). In conclusion, anti-SNRPA autoantibody serves as a novel biomarker for SSc diagnosis and may be promising for clinical applications.


Assuntos
Doenças Autoimunes , Escleroderma Sistêmico , Humanos , Escleroderma Sistêmico/diagnóstico , Escleroderma Sistêmico/metabolismo , Autoanticorpos , Biomarcadores/metabolismo , Autoimunidade , Peptídeos
15.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(1): 233-240, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36765505

RESUMO

OBJECTIVE: To establish an intestinal organoid model that mimic acute graft versus host disease (aGVHD) caused intestinal injuries by using aGVHD murine model serum and organoid culture system, and explore the changes of aGVHD intestine in vitro by advantage of organoid technology. METHODS: 20-22 g female C57BL/6 mice and 20-22 g female BALB/c mice were used as donors and recipients for bone marrow transplantation, respectively. Within 4-6 h after receiving a lethal dose (8.0 Gy) of γ ray total body irradiation, a total of 0.25 ml of murine derived bone marrow cells (1×107/mice, n=20) and spleen nucleated cells (5×106/mice, n=20) was infused to establish a mouse model of aGVHD (n=20). The aGVHD mice were anesthetized at the 7th day after transplantation, and the veinal blood was harvested by removing the eyeballs, and the serum was collected by centrifugation. The small intestinal crypts of healthy C57BL/6 mice were harvested and cultivated in 3D culture system that maintaining the growth and proliferation of intestinal stem cells in vitro. In our experiment, 5%, 10%, 20% proportions of aGVHD serum were respectively added into the organoid culture system for 3 days. The formation of small intestinal organoids were observed under an inverted microscope and the morphological characteristics of intestinal organoids in each groups were analyzed. For further evaluation, the aGVHD intestinal organoids were harvested and their pathological changes were observed. Combined with HE staining, intestinal organ morphology evaluation was performed. Combined with Alcian Blue staining, the secretion function of aGVHD intestinal organoids was observed. The distribution and changes of Lgr5+ and Clu+ intestinal stem cells in intestinal organoids were analyzed under the conditions of 5%, 10% and 20% serum concentrations by immunohistochemical stainings. RESULTS: The results of HE staining showed that the integrity of intestinal organoids in the 5% concentration serum group was better than that in the 10% and 20% groups. The 5% concentration serum group showed the highest number of organoids, the highest germination rate and the lowest pathological score among experimental groups, while the 20% group exhibited severe morphological destruction and almost no germination was observed, and the pathological score was the highest among all groups(t=3.668, 4.334,5.309,P<0.05). The results of Alican blue staining showed that the secretion function of intestinal organoids in serum culture of aGVHD in the 20% group was weaker than that of the 5% group and 10% of the organoids, and there was almost no goblet cells, and mucus was stainned in the 20% aGVHD serum group. The immunohistochemical results showed that the number of Lgr5+ cells of intestinal organoids in the 5% group was more than that of the intestinal organoids in the 10% aGVHD serum group and 20% aGVHD serum group. Almost no Clu+ cells were observed in the 5% group. The Lgr5+ cells in the 20% group were seriously injuried and can not be observed. The proportion of Clu+ cells in the 20% group significantly increased. CONCLUSION: The concentration of aGVHD serum in the culture system can affect the number and secretion function of intestinal organoids as well as the number of intestinal stem cells in organoids. The higher the serum concentration, the greater the risk of organoid injury, which reveal the characteristics of the formation and functional change of aGVHD intestinal organoids, and provide a novel tool for the study of intestinal injury in aGVHD.


Assuntos
Transplante de Medula Óssea , Doença Enxerto-Hospedeiro , Camundongos , Feminino , Animais , Camundongos Endogâmicos C57BL , Células-Tronco , Organoides
16.
Stem Cell Rev Rep ; 19(1): 201-212, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35900693

RESUMO

Although various reconstruction techniques are available for cartilage defects, the repair effects and conveniences remain to be further improved due to the limited regenerative capacity of cartilaginous tissues and difficulties in seamlessly fulfilling irregularly shaped defects. In the current study, we explored the repair efficacy of stem cell microcarrier construct (microcarriers loaded with human chondrogenic progenitor cells or bone marrow mesenchymal stem cells) in cartilage defect models. A total of 39 healthy New Zealand white rabbits were included, and femoral trochlear cartilage defect models were established (n = 33). Stem cell microcarrier constructs were implanted into cartilage defects (n = 6), the maintenance conditions of the implanted constructs were observed on days 4, 8, and 30 post implantation (n = 3). Gross observation and pathological analysis were performed to assay the reconstitution of cartilage defects at 12 weeks post-cartilage defect repair(n = 6). The microcarriers could fill the defect model with good plasticity to integrate well with the boundary native normal cartilage. At 3 months after implantation, the defects were filled with fibrous cartilage tissues in the microcarrier without stem cells group. In the microcarrier loaded with BMSCs group, newly formed tissue with a similar appearance of boundary cartilage fulfilled the defects, but the surface was not completely smooth. Promisingly, the defects were almost completely filled with newly regenerated cartilaginous tissues, which had a smooth appearance similar to that of normal cartilage in the microcarrier loaded with CPCs group. These results suggest the feasibility of stem cell microcarrier construct in repairing cartilage defects, indicating promising clinical application prospects.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Coelhos , Humanos , Animais , Engenharia Tecidual/métodos , Células-Tronco
17.
Hepatobiliary Pancreat Dis Int ; 22(3): 253-262, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35568681

RESUMO

BACKGROUND: Liver transplantation (LT) is the best treatment for patients with hepatocellular carcinoma (HCC). However, the surgical technique needs to be improved. The present study aimed to evaluate the "no-touch" technique in LT. METHODS: From January 2018 to December 2019, we performed a prospective randomized controlled trial on HCC patients who underwent LT. The patients were randomized into two groups: a no-touch technique LT group (NT group, n = 38) and a conventional LT technique group (CT group, n = 46). Operative outcomes and survival in the two groups were analyzed. RESULTS: The perioperative parameters were comparable between the two groups (P > 0.05). There was no significant difference between the two groups in disease-free survival (DFS) (P = 0.732) or overall survival (OS) (P = 0.891). Of 36 patients who were beyond the Hangzhou criteria for LT, the DFS of the patients in the NT group was significantly longer than that in the CT group (median 402 vs. 126 days, P = 0.025). In 31 patients who had portal vein tumor thrombosis (PVTT), DFS and OS in the NT group were significantly better than those in the CT group (median DFS 420 vs. 167 days, P = 0.022; 2-year OS rate 93.8% vs. 66.7%, P = 0.043). In 14 patients who had diffuse-type HCCs, DFS and OS were significantly better in the NT group than those in the CT group (median DFS 141 vs. 56 days, P = 0.008; 2-year OS rate 75.0% vs. 33.3%, P = 0.034). Multivariate analysis showed that for patients with PVTT and diffuse-type HCCs, the no-touch technique was an independent favorable factor for OS (PVTT: HR = 0.018, 95% CI: 0.001-0.408, P = 0.012; diffuse-type HCCs: HR = 0.034, 95% CI: 0.002-0.634, P = 0.024). CONCLUSIONS: The no-touch technique improved the survival of patients with advanced HCC compared with the conventional technique. The no-touch technique may provide a new and effective LT technique for advanced HCCs.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Transplante de Fígado , Trombose Venosa , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Transplante de Fígado/efeitos adversos , Transplante de Fígado/métodos , Estudos Prospectivos , Resultado do Tratamento , Trombose Venosa/etiologia , Trombose Venosa/cirurgia , Estudos Retrospectivos , Veia Porta/patologia
18.
Curr Med Sci ; 42(5): 1094-1098, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36184728

RESUMO

OBJECTIVE: To investigate the epidemiological features in children after the coronavirus disease 2019 (COVID-19) pandemic. METHODS: This study collected throat swabs and serum samples from hospitalized pediatric patients of Renmin Hospital of Wuhan University, Wuhan, Hubei province, China before and after the COVID-19 pandemic. Respiratory infected pathogens [adenovirus (ADV), influenza virus A/B (Flu A/B), parainfluenza virus 1/2/3 (PIV1/2/3), respiratory syncytial virus (RSV), Mycoplasma pneumoniae (MP), and Chlamydia pneumoniae (CP)] were detected. The pathogens, age, and gender were used to analyze the epidemiological features in children after the COVID-19 pandemic. RESULTS: The pathogen detection rate was significantly higher in females than in males (P<0.05), and the infection of PIV1 and MP was mainly manifested. After the COVID-19 pandemic, PIV1, PIV3, RSV, and MP had statistically different detection rates among the age groups (P<0.05), and was mainly detected in patients aged 0-6 years, 0-3 years, 0-3 years, and 1-6 years, respectively. When comparing before the COVID-19 pandemic, the total detection rate of common respiratory pathogens was lower (P<0.05). Except for the increase in the detection rate of PIV1 and CP, the infection rate of other pathogens had almost decreased. CONCLUSION: The prevention and control measures for the COVID-19 pandemic effectively changed the epidemiological features of common respiratory tract infectious diseases in pediatric children.


Assuntos
COVID-19 , Infecções Respiratórias , Masculino , Feminino , Criança , Humanos , Pandemias , COVID-19/epidemiologia , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/diagnóstico , Mycoplasma pneumoniae , Vírus Sinciciais Respiratórios
19.
Am J Sports Med ; 50(13): 3660-3670, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36190157

RESUMO

BACKGROUND: The first-line clinical strategy for small cartilage/osteochondral defects is microfracture (MF). However, its repair efficacy needs improvement. HYPOTHESIS: Appropriate energy radial shockwave stimulation in MF holes would greatly improve repair efficacy in the porcine osteochondral defect model, and it may obtain comparable performance with common tissue engineering techniques. STUDY DESIGN: Controlled laboratory study. METHODS: Osteochondral defect models (8-mm diameter, 3-mm depth) were established in the weightbearing area of Bama pigs' medial femoral condyles. In total, 25 minipigs were randomly divided into 5 groups: control (Con; without treatment), MF, MF augmentation (MF+; treated with appropriate energy radial shockwave stimulation in MF holes after MF), tissue engineering (TE; treated with compounds of microcarrier and bone marrow mesenchymal stem cells), and sham (as the positive control). After 3 months of intervention, osteochondral specimens were harvested for macroscopic, radiological, biomechanical, and histological evaluations. The statistical data were analyzed using 1-way analysis of variance. RESULTS: Based on the macroscopic appearance, the smoothness and integration of the repaired tissue in the MF+ group were improved when compared with the Con and MF groups. The histological staining suggested more abundant cartilaginous matrix deposition in the MF+ group versus the Con and MF groups. The general scores of the macroscopic and histological appearances were comparable in the MF+ and the TE groups. The high signal areas of the osteochondral unit in the magnetic resonance images were significantly decreased in the MF+ group, with no difference with the TE group. The micro-computed tomography data demonstrated the safety of direct in situ radial shockwave performance. Biomechanical tests revealed that the repaired tissue's Young modulus was highest in the MF+ group and not statistically different from that in the TE group. CONCLUSION: Direct in situ radial shockwave stimulation with appropriate energy significantly improves the short-term repair efficacy of MF. More encouragingly, the MF+ group in our study obtained repair performance comparable with the TE therapy. CLINICAL RELEVANCE: This strategy is easy to perform and can readily be generalized with safety and higher cartilage repair efficacy. Moreover, it is expected to be accomplished under arthroscopy, indicating tremendous clinical transformative value.


Assuntos
Doenças das Cartilagens , Cartilagem Articular , Fraturas de Estresse , Fraturas Intra-Articulares , Animais , Doenças das Cartilagens/cirurgia , Cartilagem Articular/cirurgia , Fraturas de Estresse/cirurgia , Fraturas Intra-Articulares/patologia , Suínos , Porco Miniatura , Engenharia Tecidual , Microtomografia por Raio-X
20.
Am J Transl Res ; 14(7): 5050-5058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958482

RESUMO

OBJECTIVE: MiR-762 has been confirmed as a tumor promoter in multiple tumors, while few reports illustrate its role in gastric cancer (GC). Thus, this research aimed to investigate whether miR-762 is involved in GC development. METHODS: MiR-762 expression in the tumor tissues from GC patients and GC cell lines was analyzed by qRT-PCR. The assays including CCK-8, transwell, and flow cytometry were performed to reveal the functions of miR-762 in GC. The target genes of miR-762 were searched by online databases, and then were verified by dual-luciferase reporter assay. Western blot was performed to investigate the activation of PI3K/AKT and Hippo pathways in GC. RESULTS: MiR-762 was aberrantly upregulated in the tumor tissues and cell lines, and miR-762 silencing could effectively reduce the viability and promote apoptosis of GC cell lines. The study identified LZTS1 as a target gene of miR-762. It was also found that the effects of miR-762 on GC cells could be reversed by LZTS1, and miR-762 could upregulate the activation of the PI3K/AKT pathway but inhibit the Hippo pathway by targeting LZTS1. CONCLUSION: MiR-762 activates PI3K/AKT and suppresses Hippo pathways to boost GC proliferation and invasion by targeting LZTS1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA