Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Virol J ; 19(1): 121, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869505

RESUMO

BACKGROUND: Classical swine fever (CSF) virus is the causative agent of an economically important, highly contagious disease of pigs. CSFV is genetically and serologically related to bovine viral diarrhea virus (BVDV). BVDV infection in pigs can mimic CSF clinical signs, which cause difficulty in differentiation. Serological test for detection of virus specific antibodies is a valuable tool for diagnosis and surveillance of CSFV and BVDV infections in animals. The aim of this study was to develop the CSFV Erns and BVDV tE2 -based ELISAs to distinguishably test specific antibodies against CSFV and BVDV. METHODS: The CSFV Erns and truncated E2 (tE2, residues 690-865) of BVDV were expressed in E. coli and purified by Ni-NTA affinity chromatography, respectively. Employing Erns or tE2 protein as diagnostic antigen, indirect ELISAs were developed to distinguishably test specific antibodies against CSFV and BVDV. The specificity and sensitivity of ELISAs were evaluated using a panel of virus specific sera of pigs, immunized rabbits and immunized mice. A total 150 clinical serum samples from farm pigs were measured by the developed ELISAs and compared with virus neutralizing test (VNT). RESULTS: Indirect ELISA was established based on recombinant CSFV Erns or BVDV tE2 protein, respectively. No serological cross-reaction between antibodies against CSFV and BVDV was observed in sera of immunized rabbits, immunized mice or farm pigs by detections of the Erns and tE2 -based ELISAs. Compared to VNT, the CSFV Erns -based ELISA displayed a high sensitivity (93.3%), specificity (92.0%) and agreement rate (92.7%), and the sensitivity, specificity and agreement rate of BVDV tE2 -based ELISA was 92.3%, 95.2% and 94.7%, respectively. CONCLUSION: The newly developed ELISAs are highly specific and sensitive and would be valuable tools for serological diagnosis for CSFV and BVDV infections.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Vírus da Diarreia Viral Bovina , Vacinas Virais , Animais , Anticorpos Antivirais , Peste Suína Clássica/diagnóstico , Diarreia , Vírus da Diarreia Viral Bovina/genética , Ensaio de Imunoadsorção Enzimática/métodos , Escherichia coli , Camundongos , Coelhos , Suínos , Proteínas do Envelope Viral/genética
2.
Virus Res ; 313: 198747, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35314201

RESUMO

The E2 glycoprotein of classical swine fever virus (CSFV) plays multiple roles in the viral life cycle. The chimeric live attenuated C strain with the E2 substitution of bovine viral diarrhea virus (BVDV) is a promising marker vaccine candidate. In this study, the recombinant chimeric CSFV/bE2 cDNA clone harboring heterologous E2 (bE2) of BVDV was constructed by genetic approaches. Recombinant infectious virus rCSFV/bE2 (P11) was recovered by 11 serial passages of transfected PK15 cells. Viral genome sequencing showed that a glutamic acid to glycine mutation (E260G) at position 260 of the bE2 was observed in rCSFV/bE2 P11. Alignment of amino acid sequences displayed that the glycine was one of three conserved residues in pestivirus E2. When the glutamic acid to glycine substitution (E260G) was introduced into chimeric CSFV/bE2 cDNA clone, the high-titer infectious rCSFV/bE2E260G was rescued. The glycine to glutamic acid substitution at corresponding position in CSFV E2 resulted in significantly decreased rCSFV/E2G259E production. We further identified that the conserved E2 residue G259 played a critical role in the release and binding activity of CSFV and that the E2 residues G259 and V111 modulated synergistically infectious virus production and replication.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Vírus da Diarreia Viral Bovina , Pestivirus , Animais , Vírus da Febre Suína Clássica/genética , Vírus da Diarreia Viral Bovina/genética , Suínos , Proteínas do Envelope Viral
3.
Arch Virol ; 166(6): 1633-1642, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33787991

RESUMO

Pestivirus nonstructural protein 3 (NS3) is a multifunctional protein with protease and helicase activities that are essential for virus replication. In this study, we used a combination of biochemical and genetic approaches to investigate the relationship between a positively charged patch on the protease module and NS3 function. The surface patch is composed of four basic residues, R50, K74 and K94 in the NS3 protease domain and H24 in the structurally integrated cofactor NS4APCS. Single-residue or simultaneous four-residue substitutions in the patch to alanine or aspartic acid had little effect on ATPase activity. However, single substitutions of R50, K94 or H24 or a simultaneous four-residue substitution resulted in apparent changes in the helicase activity and RNA-binding ability of NS3. When these mutations were introduced into a classical swine fever virus (CSFV) cDNA clone, a single substitution at K94 or a simultaneous four-residue substitution (Qua_A or Qua_D) impaired the production of infectious virus. Furthermore, the replication efficiency of the CSFV variants was partially correlated with the helicase activity of NS3 in vitro. Our results suggest that the conserved positively charged patch on NS3 plays an important role in modulating the NS3 helicase activity in vitro and CSFV production.


Assuntos
Pestivirus/fisiologia , RNA Helicases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Adenosina Trifosfatases , Sequência de Aminoácidos , Substituição de Aminoácidos , Escherichia coli , Regulação Viral da Expressão Gênica , Modelos Moleculares , Mutação , Pestivirus/genética , Conformação Proteica , RNA Helicases/genética , Serina Endopeptidases/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA