Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(39): e202401400, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38736421

RESUMO

Coumestan represents a biologically relevant structural motif distributed in a number of natural products, and the rapid construction of related derivatives as well as the characterization of targets would accelerate lead compound discovery in medicinal chemistry. In this work, a general and scalable approach to 8,9-dihydroxycoumestans via two-electrode constant current electrolysis was developed. The application of a two-phase (aqueous/organic) system plays a crucial role for success, protecting the sensitive o-benzoquinone intermediates from over-oxidation. Based on the structurally diverse products, a primary SAR study on coumestan scaffold was completed, and compound 3 r exhibited potent antiproliferative activities and a robust topoisomerase I (Top1) inhibitory activity. Further mechanism studies demonstrates that compound 3 r was a novel Top1 poison, which might open an avenue for the development of Top1-targeted antitumor agent.


Assuntos
Antineoplásicos , Cumarínicos , DNA Topoisomerases Tipo I , Inibidores da Topoisomerase I , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/síntese química , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo I/química , Humanos , Relação Estrutura-Atividade , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Cumarínicos/química , Cumarínicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Oxirredução , Umbeliferonas/química , Umbeliferonas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais
2.
Bioorg Chem ; 145: 107217, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368657

RESUMO

Intrinsically disordered proteins (IDPs) are characterized by their inability to adopt well-defined tertiary structures under physiological conditions. Nonetheless, they often play pivotal roles in the progression of various diseases, including cancer, neurodegenerative disorders, and cardiovascular ailments. Owing to their inherent dynamism, conventional drug design approaches based on structural considerations encounter substantial challenges when applied to IDPs. Consequently, the pursuit of therapeutic interventions directed towards IDPs presents a complex endeavor. While there are indeed existing methodologies for targeting IDPs, they are encumbered by noteworthy constrains. Hence, there exists an imminent imperative to investigate more efficacious and universally applicable strategies for modulating IDPs. Here, we present an overview of the latest advancements in the research pertaining to IDPs, along with the indirect regulation approach involving the modulation of IDP degradation through proteasome. By comprehending these advancements in research, novel insights can be generated to facilitate the development of new drugs targeted at addressing the accumulation of IDPs in diverse pathological conditions.


Assuntos
Proteínas Intrinsicamente Desordenadas , Neoplasias , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Desenho de Fármacos , Neoplasias/metabolismo , Conformação Proteica
3.
Eur J Med Chem ; 262: 115881, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37883897

RESUMO

A series of novel dihydroquinolin-4(1H)-one derivatives targeting colchicine binding site on tubulin were designed, synthesized and evaluated as anticancer agents. The most potent compound 6t showed remarkable antiproliferative activities against four cancer cell lines with IC50 values among 0.003-0.024 µM and tubulin polymerization inhibitory activity (IC50 = 3.06 µM). Further mechanism studies revealed that compound 6t could induce K562 cells apoptosis and arrest at the G2/M phase. Meanwhile, 6t significantly inhibited migration and invasion of MDA-MB-231 cells, and disrupted the angiogenesis in human umbilical vein endothelial cells (HUVECs) in vitro. In addition, compound 6t inhibited tumor growth in H22 allograft tumor model with a tumor growth inhibition (TGI) rate of 63.3 % (i.v., 20 mg/kg per day) without obvious toxicity. Collectively, these results indicated that compound 6t was a novel tubulin polymerization inhibitor with potent anticancer properties in vitro and in vivo.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Humanos , Moduladores de Tubulina/química , Tubulina (Proteína)/metabolismo , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Antineoplásicos/química , Polimerização
4.
Eur J Med Chem ; 257: 115529, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37269670

RESUMO

A series of novel stilbene-based derivatives were designed and synthesized as tubulin/HDAC dual-target inhibitors. Among forty-three target compounds, compound II-19k not only exhibited considerable antiproliferative activity in the hematological cell line K562 with IC50 value of 0.003 µM, but also effectively inhibited the growth of various solid tumor cell lines with IC50 values ranging from 0.005 to 0.036 µM. The mechanism studies demonstrated that II-19k could inhibit microtubules and HDACs at the cellular level, block cell cycle arrest at G2 phase, induce cell apoptosis, and reduce solid tumor cells metastasis. What's more, the vascular disrupting effects of compound II-19k were more pronounced than the combined administration of parent compound 8 and HDAC inhibitor SAHA. The in vivo antitumor assay of II-19k also showed the superiority of dual-target inhibition of tubulin and HDAC. II-19k significantly suppressed the tumor volume and effectively reduced tumor weight by 73.12% without apparent toxicity. Overall, the promising bioactivities of II-19k make it valuable for further development as an antitumor agent.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Relação Estrutura-Atividade , Apoptose
5.
Bioorg Chem ; 138: 106626, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37295239

RESUMO

Peptides have limitations as active pharmaceutical agents due to rapid hydrolysis by proteases and poor cell permeability. To overcome these limitations, a series of peptidyl proteasome inhibitors embedded with four-membered heterocycles were designed to enhance their metabolic stabilities. All synthesized compounds were screened for their inhibitory activities against human 20S proteasome, and 12 target compounds displayed potent efficacy with IC50 values lower than 20 nM. Additionally, these compounds exhibited strong anti-proliferative activities against multiple myeloma (MM) cell lines (MM1S: 72, IC50 = 4.86 ± 1.34 nM; RPMI-8226: 67, IC50 = 12.32 ± 1.44). Metabolic stability assessments of SGF, SIF, plasma and blood were conducted, and the representative compound 73 revealed long half-lives (Plasma: T1/2 = 533 min; Blood: T1/2 > 1000 min) and good proteasome inhibitory activity in vivo. These results suggest that compound 73 serve as a lead compound for the development of more novel proteasome inhibitors.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Relação Estrutura-Atividade , Desenho de Fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proliferação de Células , Linhagem Celular Tumoral
6.
Bioorg Med Chem ; 91: 117384, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356356

RESUMO

A group of 4-(1-methyl-1H-indol-3-yl)pyrimidin-2-amine derivatives containing a hypoxia-activated nitroimidazole group were designed as EGFR inhibitors. Among this series, A14 was identified as the optimal compound, exhibiting potent anti-proliferative activities against H1975 and HCC827 cells. Under hypoxic condition, the anti-proliferative activities of A14 improved by 4-6-fold (IC50 < 10 nM), indicating its hypoxia-selectivity. A14's high potency may be attributed to its inhibition against multiple kinases, including EGFR, JAK2, ROS1, FLT3, FLT4 and PDGFRα, which was confirmed by binding assays on a panel of 30 kinases. Furthermore, A14 exhibited good bio-reductive property and could bind with nucleophilic amino acids after being activated under hypoxic conditions. With its anti-proliferative activities and selectivity for hypoxia and oncogenic kinases, A14 shows promise as a multi-target kinase inhibitor for cancer therapy.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Nitroimidazóis , Humanos , Proteínas Tirosina Quinases/metabolismo , Proliferação de Células , Receptores ErbB , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/química , Hipóxia , Inibidores de Proteínas Quinases/química
7.
Bioorg Chem ; 135: 106507, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37030106

RESUMO

The proteasome regulates intracellular processes, maintains biological homeostasis, and has shown great significance in the study of various diseases, such as neurodegenerative diseases, immune-related diseases, and cancer, especially in hematologic malignancies such as multiple myeloma (MM) and mantle cell lymphoma (MCL). All clinically used proteasome inhibitors bind to the active site of the proteasome and thus exhibit a competitive mechanism. The development of resistance and intolerance during treatment drives the search for inhibitors with different mechanisms of action. In this review, we provide an overview of noncompetitive proteasome inhibitors, including their mechanisms of action, function, possible applications, and their advantages and disadvantages compared with competitive inhibitors.


Assuntos
Antineoplásicos , Linfoma de Célula do Manto , Humanos , Adulto , Inibidores de Proteassoma/farmacologia , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Complexo de Endopeptidases do Proteassoma/metabolismo , Linfoma de Célula do Manto/tratamento farmacológico
8.
Bioorg Chem ; 135: 106494, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37011522

RESUMO

To overcome or delay the drug-resistance of first-generation epidermal growth factor receptor (EGFR) kinase inhibitors and non-selectivity toxicity mediated by second-generation inhibitors, splicing principle was employed to design and synthesize a series of Osimertinib derivatives containing dihydroquinoxalinone (8-30) as the novel third-generation inhibitors against double mutant L858R/T790M in EGFR. Among them, compound 29 showed excellent kinase inhibitory activity against EGFRL858R/T790M with an IC50 value of 0.55 ± 0.02 nM and potent anti-proliferative activity against H1975 cells with an IC50 value of 5.88 ± 0.07 nM. Moreover, the strong down-regulation effect of EGFR-mediated signaling pathways and the promotion of apoptosis in H1975 cells confirmed its potent antitumor activities. Compound 29 was also demonstrated with good ADME profile in various in vitro assays. Further in vivo studies confirmed that compound 29 could suppress the growth of xenograft tumors. These results verified that compound 29 would be a promising lead compound for targeting drug-resistant EGFR mutations.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
9.
Future Med Chem ; 15(1): 73-95, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36756851

RESUMO

Microtubules, formed by α- and ß-tubulin heterodimer, are considered as a major target to prevent the proliferation of tumor cells. Microtubule-targeted agents have become increasingly effective anticancer drugs. However, due to the relatively sophisticated chemical structure of taxane and vinblastine, their application has faced numerous obstacles. Conversely, the structure of colchicine binding site inhibitors (CBSIs) is much easier to be modified. Moreover, CBSIs have strong antiproliferative effect on multidrug-resistant tumor cells and have become the mainstream research orientation of microtubule-targeted agents. This review focuses mainly on the recent advances of CBSIs during 2017-2022, attempts to depict their biological activities to analyze the structure-activity relationships and offers new perspectives for designing next generation of novel CBSIs.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Colchicina/metabolismo , Tubulina (Proteína)/metabolismo , Ligação Proteica , Sítios de Ligação , Antineoplásicos/farmacologia , Antineoplásicos/química , Relação Estrutura-Atividade , Proliferação de Células , Linhagem Celular Tumoral
10.
Angew Chem Int Ed Engl ; 62(13): e202217246, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670545

RESUMO

Hydrophobic tagging (HyT) is a potential therapeutic strategy for targeted protein degradation (TPD). Norbornene was discovered as an unprecedented hydrophobic tag in this study and was used to degrade the anaplastic lymphoma kinase (ALK) fusion protein by linking it to ALK inhibitors. The most promising degrader, Hyt-9, potently reduced ALK levels through Hsp70 and the ubiquitin-proteasome system (UPS) in vitro without compensatory upregulation of ALK. Furthermore, Hyt-9 exhibited a significant tumor-inhibiting effect in vivo with moderate oral bioavailability. More importantly, norbornene can also be used to degrade the intractable enhancer of zeste homolog 2 (EZH2) when tagged with the EZH2 inhibitor tazemetostat. Thus, the discovery of novel hydrophobic norbornene tags shows promise for the future development of TPD technology.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Proteólise , Inibidores Enzimáticos , Complexo de Endopeptidases do Proteassoma , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/química
11.
Bioorg Chem ; 131: 106327, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36549254

RESUMO

Protopanoxadiol is a key active ingredient derived from Panax ginseng that is well-known to exhibit anti-tumor activity. Previous research focused on the natural protopanaxadiol derivative AD-1 has demonstrated that it possesses broad spectrum anti-tumor activities in vitro and in vivo. However, its limited activity, selectivity, and cell permeability have impeded its therapeutic application. Herein, a series of novel AD-1 derivatives were designed and synthesized based on proteolysis-targeting chimera (PROTAC) technology by linking AD-1 at the C-3 and C-12 positions with pomalidomide through linkers of alkyl chain of differing lengths to achieve the goal of improving the efficacy of the parent compound. Among these synthesized PROTACs, the representative compound A05 exhibited the most potent anti-proliferative activity against A549 cells. Furthermore, mechanistic studies revealed that compound A05 was able to suppress MDM2 expression, disrupt interactions between p53 and MDM2 and readily induce apoptotic death via the mitochondrial apoptosis pathway. Moreover, the in vivo assays revealed that compound A05 exhibited both anti-proliferative and anti-metastatic activities in the zebrafish tumor xenograft model with A549 cells. Together, our findings suggest that AD-1 based PROTACs associated with the degradation of MDM2 may have promising effects for the treatment of lung cancer and this work provide a foundation for future efforts to develop novel anti-tumor agents from natural products.


Assuntos
Antineoplásicos , Desenho de Fármacos , Neoplasias Pulmonares , Quimera de Direcionamento de Proteólise , Animais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Proliferação de Células , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Proteólise , Quimera de Direcionamento de Proteólise/síntese química , Quimera de Direcionamento de Proteólise/química , Quimera de Direcionamento de Proteólise/farmacologia , Peixe-Zebra , Células A549
12.
Bioorg Chem ; 129: 106138, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36115310

RESUMO

Hypoxia is widespread in solid tumors, such as NSCLC, and has become a very attractive target. On the basis of AZD9291 scaffold, novel hypoxia-targeted EGFR inhibitors without the acrylamide warhead but containing hypoxic reductive activation groups were described. Among them, compound JT21 exhibited impressive inhibitory activity (IC50 = 23 nM) against EGFRL858R/T790M and displayed about 21-fold inhibitory activity decrease against EGFRwt. Under hypoxia, JT21 exhibited more significant proliferation inhibitory activities against H1975 cells (IC50 = 7.39 ± 2.20 nM) and HCC827 cells (IC50 = 5.88 ± 0.85 nM) than that of AZD9291, which was about 5 times more effective than normoxia activities. Meanwhile, the weak inhibition effects on A549 and BEAS-2B cells suggested JT21 might be a selective inhibitor for EGFR mutations with low toxicity. Furthermore, JT21 could induce apoptosis of H1975 cells under hypoxia and showed good bio-reductive property.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Inibidores de Proteínas Quinases , Receptores ErbB , Hipóxia Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Mutação , Hipóxia
13.
J Med Chem ; 65(16): 11187-11213, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35926141

RESUMO

Most vascular disrupting agents (VDAs) fail to prevent the regrowth of blood vessels at the edge of tumors, causing tumor rebound and relapse. Herein, a series of novel multifunctional vascular disrupting agents (VDAs) capable of inhibiting microtubule polymerization and histone deacetylases (HDACs) were designed and synthesized using the tubulin polymerization inhibitor TH-0 as the lead compound. Among them, compound TH-6 exhibited the most potent antiproliferative activity (IC50 = 18-30 nM) against a panel of cancer cell lines. As expected, TH-6 inhibited tubulin assembly and increased the acetylation level of HDAC substrate proteins in HepG2 cells. Further in vivo antitumor assay displayed that TH-6 effectively inhibited tumor growth with no apparent toxicity. More importantly, TH-6 disrupted both the internal and peripheral tumor vasculatures, which contributed to the persistent tumor inhibitory effects after drug withdrawal. Altogether, TH-6 deserves to be further investigated for the new approach to clinical cancer therapy.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Histona Desacetilases/metabolismo , Polimerização , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico
14.
Eur J Med Chem ; 240: 114575, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35803175

RESUMO

A series of NQO1 selectively activated prodrugs were designed and synthesized by introducing indolequinone moiety to the C-3, C-23 or C-28 position of 23-hydroxybetulinic acid (23-HBA) and its analogues. Among them, the representative compound 32j exhibited significant antiproliferative activities against NQO1-overexpressing HT-29 cells and A549 cells, with IC50 values of 1.87 and 2.36 µM, respectively, which were 20-30-fold more potent than those of parent compound 23-HBA. More importantly, it was demonstrated in the in vivo antitumor experiment that 32j effectively suppressed the tumor volume and largely reduced tumor weight by 72.69% with no apparent toxicity, which was more potent than the positive control 5-fluorouracil. This is the first breakthrough in the improvement of in vivo antitumor activities of 23-HBA derivatives. The further molecular mechanism study revealed that 32j blocked cell cycle arrest at G2/M phase, induced cell apoptosis, depolarized mitochondria and elevated the intracellular ROS levels in a dose-dependent manner. Western blot analysis indicated that 32j induced cell apoptosis by interfering with the expression of apoptosis-related proteins. These findings suggest that compound 32j could be considered as a potent antitumor prodrug candidate which deserves to be further investigated for personalized cancer therapy.


Assuntos
Antineoplásicos , Pró-Fármacos , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Humanos , NAD/farmacologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Pró-Fármacos/farmacologia , Quinonas/farmacologia , Triterpenos
15.
Fitoterapia ; 160: 105222, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35618147

RESUMO

A series of novel nitrogenous heterocycle substituted 23-Hydroxybetulinic acid (23-HBA) derivatives with amide linkages at the C-3 position were designed, synthesized and evaluated for their antitumor activities. The biological screening results showed that most of the derivatives exhibited more potent antiproliferative activities than 23-HBA. In particular compound II-9 exhibited the most potent activities with IC50 values ranging from 1.96 µM to 6.20 µM against five cancer cell lines (B16, HepG2, A2780, MCF-7 and A549). The preliminary mechanism study showed that compound II-9 caused cell cycle arrest at G1 phase, induced cell apoptosis and depolarized mitochondria of B16 cells in a dose dependent manner. Moreover, western blot analysis indicated that compound II-9 down-regulated the expression of anti-apoptotic protein Bcl-2, up-regulated the expression of pro-apoptotic protein Bad, and activated cytochrome C and caspase 3 to cause cell apoptosis. In summary, II-9 may serve as a promising lead for the development of new natural product-based antitumor agents and deserve further investigation.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Estrutura Molecular , Nitrogênio/farmacologia , Relação Estrutura-Atividade , Triterpenos
16.
Eur J Med Chem ; 233: 114211, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218994

RESUMO

A series of novel non-covalent peptidomimetic proteasome inhibitors possessing bulky group at the C-terminus and N-alkylation at the N-terminus were designed with the aim to increase metabolic stabilities in vivo. All the target compounds were screened for their inhibitory activities against human 20S proteasome, and most analogs exhibited notable potency compared with the positive control bortezomib with IC50 values lower than 10 nM, which also displayed potent cytotoxic activities against multiple myeloma (MM) cell lines and human acute myeloid leukemia (AML) cells. Furthermore, whole blood stability and in vivo proteasome inhibitory activity experiments of selected compounds were conducted for further evaluation, and the representative compound 43 (IC50 = 8.39 ± 2.32 nM, RPMI-8226: IC50 = 15.290 ± 2.281 nM, MM-1S: IC50 = 9.067 ± 3.103 nM, MV-4-11: IC50 = 2.464 ± 0.713 nM) revealed a half-life extension of greater than 9-fold (329.21 min VS 36.79 min) and potent proteasome inhibitory activity in vivo. The positive results confirmed the reliability of the metabolism guided optimization strategy, and the analogs discovered are potential leads for exploring new anti-MM drugs.


Assuntos
Antineoplásicos , Neoplasias , Peptidomiméticos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Peptidomiméticos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Reprodutibilidade dos Testes
17.
Ann Palliat Med ; 10(4): 4661-4669, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33966414

RESUMO

BACKGROUND: Critical limb artery ischemia is one of common complications after hemodialysis, with endovascular therapy (EVT) having become its first-line treatment. There is no relevant study investigating the relationship between EVT and the prognosis of hemodialysis patients with critical lower limb ischemia, the most common site of vascular dysfunction. METHODS: This was a retrospective, nonrandomized, single-center study. Hemodialysis patients with critical lower limb ischemia between May 2015 and October 2018 were included in this study. Their demographic and clinical data and the results of laboratory test were collected. The outcomes included all-cause mortality, amputation, and revascularization. Kaplan-Meier analysis and log-rank test were used to assess overall survival and amputation-free survival. Univariable and multivariable hazard Cox regression analyses were performed to determine risk factors of amputation and mortality. RESULTS: In all, 67 hemodialysis patients were finally included in this study. The median age of included patients was 69.8±8.7 years, and the median duration of hemodialysis was 44.1±9.2 months. There was no significant difference between patients receiving and not receiving EVT in collected demographic and clinical data except for the duration of hemodialysis (46.1±9.0 vs. 41.7±9.0 months; P=0.048). The level of high-density lipoprotein cholesterol (HDL-C) in patients receiving EVT was 1.4±0.6 mmol/L, which was significantly lower than the 1.9±0.6 mmol/L in patients not receiving EVT (P<0.001). The results from the Kaplan-Meier curves indicated that the incidences of all-cause mortality and amputation were much lower in patients receiving EVT than in those not receiving EVT (P=0.038 and P=0.020). Hazard Cox regression analysis also indicated that EVT played protective role in all-cause mortality and amputation in hemodialysis patients with lower limb ischemia. Age, nutritional risk, stroke, and C-reactive protein (CRP) were also determined as independent risk factors of all-cause mortality according to multivariable analysis. Additionally, duration of hemodialysis and smoking history were identified as independent risk factors of amputation. CONCLUSIONS: EVT could be an efficient treatment for critical lower limb ischemia in hemodialysis patients to reduce all-cause mortality and the incidence of amputation. Moreover, some risk factors, such as malnutritional and stroke, should be avoided to improve the prognosis of hemodialysis patients.


Assuntos
Procedimentos Endovasculares , Idoso , Artérias , Estado Terminal , Intervalo Livre de Doença , Humanos , Isquemia , Estimativa de Kaplan-Meier , Extremidade Inferior , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Diálise Renal , Estudos Retrospectivos , Fatores de Risco , Resultado do Tratamento
18.
Eur J Med Chem ; 216: 113316, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33676300

RESUMO

A series of novel N-benzylbenzamide derivatives were designed and synthesized as tubulin polymerization inhibitors. Among fifty-one target compounds, compound 20b exhibited significant antiproliferative activities with IC50 values ranging from 12 to 27 nM against several cancer cell lines, and possessed good plasma stability and satisfactory physicochemical properties. Mechanism studies demonstrated that 20b bound to the colchicine binding site and displayed potent anti-vascular activity. Notably, the corresponding disodium phosphate 20b-P exhibited an excellent safety profile with the LD50 value of 599.7 mg/kg (i.v. injection), meanwhile, it significantly inhibited tumor growth and decreased microvessel density in liver cancer cell H22 allograft mouse model without obvious toxicity. Collectively, 20b and 20b-P are novel promising anti-tubulin agents with more druggable properties and deserve to be further investigated for cancer therapy.


Assuntos
Antineoplásicos/química , Benzamidas/química , Desenho de Fármacos , Moduladores de Tubulina/química , Tubulina (Proteína)/química , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Benzamidas/metabolismo , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Sítios de Ligação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colchicina/química , Colchicina/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/metabolismo , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico
19.
Anticancer Drugs ; 32(7): 727-733, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33735117

RESUMO

Vinpocetine is widely used to treat cerebrovascular diseases. However, the effect of vinpocetine to treat hepatocellular carcinoma (HCC) has not been investigated. In this study, we revealed that vinpocetine was associated with antiproliferative activity in HCC cells, but induced cytoprotective autophagy, which restricted its antitumor activity. Autophagy inhibitors improved the antiproliferative activity of vinpocetine in HCC cells. Sorafenib is effective to treat advanced HCC, but the effect of autophagy induced by sorafenib is indistinct. We demonstrated vinpocetine plus sorafenib suppressed the cytoprotective autophagy activated by vinpocetine in HCC cells and significantly induced apoptosis and suppressed cell proliferation in HCC cells. In addition, vinpocetine plus sorafenib activates glycogen synthase kinase 3ß (GSK-3ß) and subsequently inhibits cytoprotective autophagy induced by vinpocetine in HCC cells. Meanwhile, overexpression of GSK-3ß was efficient to increase the apoptosis induced by vinpocetine plus sorafenib in HCC cells. Our study revealed that vinpocetine plus sorafenib could suppress the cytoprotective autophagy induced by vinpocetine and subsequently show synergistically anti-HCC activity via activating GSK-3ß and the combination of vinpocetine and sorafenib might reverse sorafenib resistance via the PI3K/protein kinase B/GSK-3ß signaling axis. Thus, vinpocetine may be a potential candidate for sorafenib sensitization and HCC treatment, and our results may help to elucidate more effective therapeutic options for HCC patients with sorafenib resistance.


Assuntos
Glicogênio Sintase Quinase 3 beta/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Sorafenibe/farmacologia , Alcaloides de Vinca/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimioterapia Combinada , Células Hep G2 , Humanos , Transdução de Sinais/efeitos dos fármacos , Sorafenibe/administração & dosagem , Alcaloides de Vinca/administração & dosagem
20.
Drug Des Devel Ther ; 14: 4327-4342, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116419

RESUMO

Proteasome is vital for intracellular protein homeostasis as it eliminates misfolded and damaged protein. Inhibition of proteasome has been validated as a powerful strategy for anti-cancer therapy, and several drugs have been approved for treatment of multiple myeloma. Recent studies indicate that proteasome has potent therapeutic effects on a variety of diseases besides cancer, including parasite infectious diseases, bacterial/fungal infections diseases, neurodegenerative diseases and autoimmune diseases. In this review, recent developments of proteasome inhibitors for various diseases and related structure activity relationships are going to be summarized.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/genética , Tratamento Farmacológico/tendências , Infecções/tratamento farmacológico , Infecções/genética , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Animais , Antineoplásicos/farmacologia , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA