Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Hazard Mater ; 471: 134276, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640682

RESUMO

Environmental pollution from cadmium (Cd) presents a serious threat to plant growth and development. Therefore, it's crucial to find out how plants resist this toxic metal to develop strategies for remediating Cd-contaminated soils. In this study, we identified CIP1, a transporter protein, by screening interactors of the protein kinase CIPK23. CIP1 is located in vesicles membranes and can transport Cd2+ when expressed in yeast cells. Cd stress specifically induced the accumulation of CIP1 transcripts and functional proteins, particularly in the epidermal cells of the root tip. CIKP23 could interact directly with the central loop region of CIP1, phosphorylating it, which is essential for the efficient transport of Cd2+. A loss-of-function mutation of CIP1 in wild-type plants led to increased sensitivity to Cd stress. Conversely, tobacco plants overexpressing CIP1 exhibited improved Cd tolerance and increased Cd accumulation capacity. Interestingly, this Cd accumulation was restricted to roots but not shoots, suggesting that manipulating CIP1 does not risk Cd contamination of plants' edible parts. Overall, this study characterizes a novel Cd transporter, CIP1, with potential to enhance plant tolerance to Cd toxicity while effectively eliminating environmental contamination without economic losses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Biodegradação Ambiental , Cádmio , Proteínas de Membrana Transportadoras , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cádmio/toxicidade , Cádmio/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Nicotiana/metabolismo , Nicotiana/genética , Nicotiana/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo
2.
Plant Physiol ; 195(3): 2339-2353, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38506490

RESUMO

Iron (Fe) distribution and reutilization are crucial for maintaining Fe homeostasis in plants. Here, we demonstrate that the tomato (Solanum lycopersicum) Colorless nonripening (Cnr) epimutant exhibits increased Fe retention in cell wall pectin due to an increase in pectin methylesterase (PME) activity. This ultimately leads to Fe deficiency responses even under Fe-sufficient conditions when compared to the wild type (WT). Whole-genome bisulfite sequencing revealed that modifications to cell wall-related genes, especially CG hypermethylation in the intron region of PECTIN METHYLESTERASE53 (SlPME53), are involved in the Cnr response to Fe deficiency. When this intron hypermethylation of SlPME53 was artificially induced in WT, we found that elevated SlPME53 expression was accompanied by increased PME activity and increased pectin-Fe retention. The manipulation of SlPME53, either through overexpression in WT or knockdown in Cnr, influenced levels of pectin methylesterification and accumulation of apoplast Fe in roots. Moreover, CG hypermethylation mediated by METHYLTRANSFERASE1 (SlMET1) increased SlPME53 transcript abundance, resulting in greater PME activity and higher Fe retention in cell wall pectin. Therefore, we conclude that the Cnr mutation epigenetically modulates SlPME53 expression by SlMET1-mediated CG hypermethylation, and thus the capacity of the apoplastic Fe pool, creating opportunities for genetic improvement of crop mineral nutrition.


Assuntos
Hidrolases de Éster Carboxílico , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Ferro , Raízes de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , Ferro/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Metilação de DNA/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Parede Celular/metabolismo , Pectinas/metabolismo
3.
Front Immunol ; 15: 1275064, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370408

RESUMO

Introduction: Idiopathic pulmonary fibrosis (IPF) is characterized by progressive lung dysfunction due to excessive collagen production and tissue scarring. Despite recent advancements, the molecular mechanisms remain unclear. Methods: RNA sequencing identified 475 differentially expressed genes (DEGs) in the TGF-ß1-induced primary lung fibrosis model. Gene expression chips GSE101286 and GSE110147 from NCBI gene expression omnibus (GEO) database were analyzed using GEO2R, revealing 94 DEGs in IPF lung tissue samples. The gene ontology (GO) and pathway enrichment, Protein-protein interaction (PPI) network construction, and Maximal Clique Centrality (MCC) scoring were performed. Experimental validation included RT-qPCR, Immunohistochemistry (IHC), and Western Blot, with siRNA used for gene knockdown. A co-expression network was constructed by GeneMANIA. Results: GO enrichment highlighted significant enrichment of DEGs in TGF-ß cellular response, connective tissue development, extracellular matrix components, and signaling pathways such as the AGE-RAGE signaling pathway and ECM-receptor interaction. PPI network analysis identified hub genes, including FN1, COL1A1, POSTN, KIF11, and ECT2. CALD1 (Caldesmon 1), CDH2 (Cadherin 2), and POSTN (Periostin) were identified as dysregulated hub genes in both the RNA sequencing and GEO datasets. Validation experiments confirmed the upregulation of CALD1, CDH2, and POSTN in TGF-ß1-treated fibroblasts and IPF lung tissue samples. IHC experiments probed tissue-level expression patterns of these three molecules. Knockdown of CALD1, CDH2, and POSTN attenuated the expression of fibrotic markers (collagen I and α-SMA) in response to TGF-ß1 stimulation in primary fibroblasts. Co-expression analysis revealed interactions between hub genes and predicted genes involved in actin cytoskeleton regulation and cell-cell junction organization. Conclusions: CALD1, CDH2, and POSTN, identified as potential contributors to pulmonary fibrosis, present promising therapeutic targets for IPF patients.


Assuntos
Fibrose Pulmonar Idiopática , Fator de Crescimento Transformador beta1 , Humanos , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Moléculas de Adesão Celular/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Expressão Gênica , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
4.
Quant Imaging Med Surg ; 14(1): 877-887, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38223094

RESUMO

Background: Sclerosing adenosis (SA) is a common proliferative benign lesion without atypia in the breast that may mimic invasive ductal carcinoma (IDC) on medical imaging, leading to it often being misdiagnosed and mistreated. Consequently, the purpose of this study was to assess the diagnostic value of multimodal ultrasound imaging in distinguishing SA from IDC. Methods: Multimodal ultrasound imaging, including automated breast volume scan (ABVS), elasticity imaging (EI), and color Doppler flow imaging (CDFI), were performed on 120 consecutive patients comprising 122 breast lesions (54 SA, 68 IDC). All lesions were pathologically confirmed. Multimodal ultrasound imaging features were compared between the two groups. Binary logistic regression analysis based on ABVS, EI, and CDFI was conducted to formulate a logistic regression equation for differentiating SA from IDC. The diagnostic performances of ABVS, EI, CDFI, and their combination were compared by the receiver operating characteristic (ROC) curve analysis. Results: The sensitivity, specificity, and accuracy of ABVS, EI, CDFI, and their combination in differentiating SA from IDC were, respectively, 75.00%, 72.22%, and 73.77%; 86.76%, 72.22%, and 80.33%; 73.53%, 64.81%, and 69.67%; and 88.24%, 74.07%, and 81.97%. Combining multimodal ultrasound imaging yielded an area under the curve (AUC) of 0.895 (95% confidence interval: 0.827-0.943), which was higher than that of ABVS, EI, and CDFI, with AUC values of 0.736, 0.795, and 0.692, respectively, and the difference was statistically significant (ABVS vs. combined model, P<0.001; CDFI vs. combined model, P<0.001; EI vs. combined model, P<0.001). There was no significant difference in the diagnostic efficacy among the three imaging modalities (ABVS vs. EI, P=0.266; ABVS vs. CDFI, P=0.4671; EI vs. CDFI, P=0.051). Compared with those in IDC, the calcification (16.67% vs. 57.35%; P<0.001) and retraction phenomena in the coronal planes (18.52% vs. 57.35%; P<0.001) were less common in patients with SA, while circumscribed margin (38.89% vs. 5.88%; P<0.001), vascularity grade 0-I (64.81% vs. 26.47%; P<0.001), and elasticity scores 1-3 (72.22% vs. 13.24%; P<0.001) were more frequently found in patients with SA. Patients with SA were significantly younger than were patients with IDC (43±11 vs. 54±11 years; P<0.001), and the lesion size was smaller in patients with SA than in those with IDC (median size 1.0 cm; interquartile range (IQR), 0.9 cm vs. median size 1.3 cm; IQR, 1.3 cm; P<0.001). Conclusions: The preliminary results suggested that multimodal ultrasound imaging can improve the diagnostic accuracy of SA and provide additional information for differential diagnosis of SA and IDC.

5.
Br J Haematol ; 204(3): 976-987, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246862

RESUMO

The presence of transient abnormal protein banding (M-protein immune reconstitution) in serum immunofixation electrophoresis after autologous haematopoietic stem cell transplantation in patients with multiple myeloma has been reported. The purpose of this study was to investigate the impact of post-transplant M-protein immune reconstitution on the prognosis of patients with multiple myeloma. M-protein immune reconstitution was observed in 25.9% (75/290) of patients. The CR rate and MRD negativity were higher in the M-protein immune reconstitution group (85.3% vs. 69.3%, p = 0.013, 81.9% vs. 66.5%, p = 0.014). Although there were no significant differences between the groups, the overall median survival time was longer in the M-protein immune reconstruction group (80 vs. 72 m, p = 0.076; not reached vs. 105 m, p = 0.312). Among patients in the cytogenetic high-risk group, the occurrence of M-protein immune reconstitution predicted better PFS and OS (80 vs. 31 m, p = 0.010; not reached vs. 91 m, p = 0.026). Additionally, in revised-International Staging System stage III patients, PFS and OS were better in those who achieved M-protein immune reconstitution (80 vs. 20 m, p = 0.025; 57 vs. 32 m, p = 0.103). The better prognosis of M-protein immune reconstitution patients may be associated with the acquisition of a deeper response. In high-risk patients, early acquisition of M-protein immune reconstitution may suggest a better prognosis.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Reconstituição Imune , Mieloma Múltiplo , Humanos , Prognóstico , Transplante de Células-Tronco Hematopoéticas/métodos , Análise Citogenética , Transplante Autólogo , Estudos Retrospectivos , Transplante de Células-Tronco , Resultado do Tratamento
6.
Phytochemistry ; 218: 113954, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104747

RESUMO

A phytochemical investigation on the alkaloid fractions of Sophora alopecuroides L. led to the production of 11 undescribed matrine-type alkaloids, sophaloseedlines I-S (1-11), 12 known analogs (12-23), and an unexpected artificial matrine-derived Al(III) complex (24). The corresponding structures were elucidated by the interpretation of spectroscopic analyses, quantum chemical calculation, and six instances (1-4, 18, and 24), verified by X-ray crystallography. The biological activities screening demonstrated that none of the isolates exhibited cytotoxicity against four human cancer cell lines (HepG2, A549, THP-1, and MCF-7) and respiratory syncytial virus (RSV) at 50 µM, while moderate anti-inflammatory activity with IC50 value from 15.6 to 47.8 µM was observed. The key structure-activity relationships of those matrine-type alkaloids for anti-inflammatory effects have been summarized. In addition, the most potent 7-epi-sophoramine (19) and aluminum sophaloseedline T (24) could effectively inhibit the release of pro-inflammatory factors (TNF-α, IL-6, and IL-1ß), as well as the expression of iNOS and COX-2 proteins.


Assuntos
Sophora , Humanos , Sophora/química , Matrinas , Estrutura Molecular , Relação Estrutura-Atividade , Anti-Inflamatórios/farmacologia , Quinolizinas/farmacologia , Quinolizinas/química
7.
Respir Res ; 24(1): 296, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007420

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive scarring interstitial lung disease with an unknown cause. Some patients may experience acute exacerbations (AE), which result in severe lung damage visible on imaging or through examination of tissue samples, often leading to high mortality rates. However, the etiology and pathogenesis of AE-IPF remain unclear. AE-IPF patients exhibit diffuse lung damage, apoptosis of type II alveolar epithelial cells, and an excessive inflammatory response. Establishing a reliable animal model of AE is critical for investigating the pathogenesis. Recent studies have reported a variety of animal models for AE-IPF, each with its own advantages and disadvantages. These models are usually established in mice with bleomycin-induced pulmonary fibrosis, using viruses, bacteria, small peptides, or specific drugs. In this review, we present an overview of different AE models, hoping to provide a useful resource for exploring the mechanisms and targeted therapies for AE-IPF.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , Animais , Camundongos , Fibrose Pulmonar Idiopática/diagnóstico , Pulmão , Modelos Animais , Progressão da Doença
8.
Discov Med ; 35(175): 124-130, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37105923

RESUMO

BACKGROUND: Hepatitis B virus (HBV) genome structure is an incomplete closed double stranded circular DNA and it uses covalently closed circular DNA (cccDNA) as template for replication. To study the antiviral effect on different HBV replication forms, a stable cell line expressing HBV using Huh7 cells with shuttle plasmid to imitate the real HBV replication form was stablished. Unlike the HepG2.2.15 cells, the replication of HBV-expressing Huh7 cells present significant decrease after 9 days of interferon-α (IFN-α) treatment. This study aimed to verify whether hepatitis B virus X (HBx) epigenetic regulation by HBV promoter is affected by the DNA form and discuss the differences between the episomal form and the integrated form. MATERIAL AND METHODS: Huh7 cells were used with two different plasmids containing HBV genome to imitate HBV-expressing cells with the episomal form and the integrated form. Luciferase reporting system was used to determine the activation of the promoter after treatment with IFN-α with different concentrations and promoter regulation factor HBx. HBx-expressing plasmid was transfected to evaluate its effect on HBV replication in the episomal form. HBV DNA and pregenomic RNA (pgRNA) in HBx knockdown cell line was determined and HBx-expressing plasmid was transfected to evaluate its effect on HBx in the episomal form. RESULTS: The two cell lines were established successfully and used for further experiments after selection. IFN-α showed significant inhibition effect on HBV pregenome promoter in the episomal form DNA while was not observed in the integrated form. After HBx-expressing plasmid was transfected, HBV pregenome promoter activity was higher in the episomal form rather than the integrated form. HBx showed a concentration-dependant activation on HBV replication in the episomal form. HBx knockdown reduced HBV production and HBV concentration significantly increased after transfection by HBx-expressing plasmid. CONCLUSIONS: HBx regulation effect on HBV pregenome promoter is influenced by the HBV genome form. The epigenetic regulation effect on HBV pregenome promoter is more active in the episomal form rather than the integrated form.


Assuntos
Epigênese Genética , Vírus da Hepatite B , Humanos , Vírus da Hepatite B/genética , Plasmídeos/genética , DNA Circular/genética , DNA Circular/metabolismo , Células Hep G2 , Replicação Viral/genética
9.
Plant J ; 113(2): 387-401, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36471650

RESUMO

Formate dehydrogenase (FDH; EC 1.2.1.2.) has been implicated in plant responses to a variety of stresses, including aluminum (Al) stress in acidic soils. However, the role of this enzyme in Al tolerance is not yet fully understood, and how FDH gene expression is regulated is unknown. Here, we report the identification and functional characterization of the tomato (Solanum lycopersicum) SlFDH gene. SlFDH encodes a mitochondria-localized FDH with Km values of 2.087 mm formate and 29.1 µm NAD+ . Al induced the expression of SlFDH in tomato root tips, but other metals did not, as determined by quantitative reverse transcriptase-polymerase chain reaction. CRISPR/Cas9-generated SlFDH knockout lines were more sensitive to Al stress and formate than wild-type plants. Formate failed to induce SlFDH expression in the tomato root apex, but NAD+ accumulated in response to Al stress. Co-expression network analysis and interaction analysis between genomic DNA and transcription factors (TFs) using PlantRegMap identified seven TFs that might regulate SlFDH expression. One of these TFs, SlSTOP1, positively regulated SlFDH expression by directly binding to its promoter, as demonstrated by a dual-luciferase reporter assay and electrophoretic mobility shift assay. The Al-induced expression of SlFDH was completely abolished in Slstop1 mutants, indicating that SlSTOP1 is a core regulator of SlFDH expression under Al stress. Taken together, our findings demonstrate that SlFDH plays a role in Al tolerance and reveal the transcriptional regulatory mechanism of SlFDH expression in response to Al stress in tomato.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , NAD/metabolismo , Alumínio/toxicidade , Alumínio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Formiatos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
J Immunol Res ; 2022: 5003930, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528616

RESUMO

Background: Hepatocellular carcinoma (HCC) is the sixth most common kind of cancer worldwide and the third leading cause of cancer mortality. Although a few studies have shown that hydroxyacid oxidase 2 (HAO2) may prevent HCC development, the molecular mechanism is unclear. Methods: We examined the levels of HAO2 expression in 23 pairs of HCC/paracancerous tissues by quantitative real-time polymerase chain reaction (qRT-PCR) and evaluated HAO2's expression in The Cancer Genome Atlas (TCGA) database. Furthermore, we examined the biological activity of HAO2 utilizing cell-based functional assays. Additionally, we evaluated the relationship between miR-615-5p and HAO2 in Hep3B cells using a dual-luciferase reporter system and assessed the downstream regulatory mechanisms of miR-615-5p on HAO2. Finally, the nude mice tumor formation experiment was used to determine the impact of HAO2 on the tumorigenicity of HCC cells. Results: HAO2 expression was considerably underexpression in HCC tissues and cells, and patients with low HAO2 expression had poorer disease-free survival. Inhibition of cell proliferation, migration, and invasion was observed when HAO2 was overexpressed. miR-615-5p had a negative relation with HAO2, and miR-615-5p restored HAO2's biological activity in HCC cells. Additionally, the tumor volume and weight were considerably reduced in the OV-HAO2 group compared to the OV-NC group. Conclusion: HAO2 was found to be underexpressed in HCC tissues and cells, and HAO2 overexpression inhibited HCC cell motility, which was negatively regulated by miR-615-5p. Exogenous expression of HAO2 reduced the tumorigenicity of HCC cells in vivo in nude mice.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Oxirredutases/genética
11.
Cell Mol Life Sci ; 79(5): 238, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35416545

RESUMO

Human males absent on the first (MOF), a histone acetyltransferase (HAT), forms male-specific lethal (MSL) and non-specific lethal (NSL), two multiprotein HATs, in cells. MSL was originally discovered in dosage compensation study in Drosophila that can specifically acetylate H4K16, while NSL can simultaneously catalyze the H4 at K5, K8, and K16 sites. However, comparative studies of the two HATs in regulating specific biological functions are rarely reported. Here, we present evidence to argue that MSL and NSL function in different ways in the epithelial-to-mesenchymal transition (EMT) process. At first, CRISPR/Cas9-mediated MSL1 (a key subunit of the MSL)-knockout (KO) and NSL3 (a key subunit of the NSL)-KO cells seem to prefer to grow in clusters. Interestingly, the former promotes cell survival and clonal formation, while the latter has the opposite effect on it. Cell staining revealed that MSL1-KO leads to multipolarized spindles, while NSL3-KO causes more lumen-like cells. Furthermore, in Transwell experiments, silencing of MSL1 promotes cell invasion in 293 T, MCF-7, and MDA-MB-231 cells. In contrast, the inhibitory effects on cell invasion are observed in the same NSL3-silenced cells. Consistent with this, mesenchymal biomarkers, like N-cadherin, vimentin, and snail, are negatively correlated with the expression level of MSL1; however, a positive relationship between these proteins and NSL3 in cells has been found. Further studies have clarified that MSL1, but not NSL3, can specifically bind to the E-box-containing Snail promoter region and thereby negatively regulate Snail transactivation. Also, silencing of MSL1 promotes the lung metastasis of B16F10 melanoma cells in mice. Finally, ChIP-Seq analysis indicated that the NSL may be mainly involved in phosphoinositide-mediated signaling pathways. Taken together, the MOF-containing MSL and NSL HATs may regulate the EMT process in different ways in order to respond to different stimuli.


Assuntos
Transição Epitelial-Mesenquimal , Histona Acetiltransferases , Acetilação , Animais , Mecanismo Genético de Compensação de Dose , Transição Epitelial-Mesenquimal/genética , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Humanos , Camundongos
12.
J Integr Plant Biol ; 64(5): 1059-1075, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35297168

RESUMO

Iron (Fe) homeostasis is critical for plant growth, development, and stress responses. Fe levels are tightly controlled by intricate regulatory networks in which transcription factors (TFs) play a central role. A series of basic helix-loop-helix (bHLH) TFs have been shown to contribute to Fe homeostasis, but the regulatory layers beyond bHLH TFs remain largely unclear. Here, we demonstrate that the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) TF SlSPL-CNR negatively regulates Fe-deficiency responses in tomato (Solanum lycopersicum) roots. Fe deficiency rapidly repressed the expression of SlSPL-CNR, and Fe deficiency responses were intensified in two clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9-generated SlSPL-CNR knock-out lines compared to the wild-type. Comparative transcriptome analysis identified 47 Fe deficiency-responsive genes the expression of which is negatively regulated by SlSPL-CNR, one of which, SlbHLH101, helps regulate Fe uptake genes. SlSPL-CNR localizes the nucleus and interacts with the GTAC and BOX 4 (ATTAAT) motifs in the SlbHLH101 promoter to repress its expression. Inhibition of SlSPL-CNR expression in response to Fe deficiency was well correlated with the expression of the microRNA SlymiR157. SlymiR157-overexpressing tomato lines displayed enhanced Fe deficiency responses, as did SlSPL-CNR loss-of-function mutants. We propose that the SlymiR157-SlSPL-CNR module represents a novel pathway that acts upstream of SlbHLH101 to regulate Fe homeostasis in tomato roots.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Deficiências de Ferro , Solanum lycopersicum , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo
13.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163057

RESUMO

Low phosphate (Pi) availability and high aluminum (Al) toxicity constitute two major plant mineral nutritional stressors that limit plant productivity on acidic soils. Advances toward the identification of genes and signaling networks that are involved in both stresses in model plants such as Arabidopsis thaliana and rice (Oryza sativa), and in other plants as well have revealed that some factors such as organic acids (OAs), cell wall properties, phytohormones, and iron (Fe) homeostasis are interconnected with each other. Moreover, OAs are involved in recruiting of many plant-growth-promoting bacteria that are able to secrete both OAs and phosphatases to increase Pi availability and decrease Al toxicity. In this review paper, we summarize these mutual mechanisms by which plants deal with both Al toxicity and P starvation, with emphasis on OA secretion regulation, plant-growth-promoting bacteria, transcription factors, transporters, hormones, and cell wall-related kinases in the context of root development and root system architecture remodeling that plays a determinant role in improving P use efficiency and Al resistance on acidic soils.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Fosfatos/deficiência , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Bactérias/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Ferro/metabolismo , Oryza/metabolismo , Oryza/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia
14.
J Healthc Eng ; 2021: 9959077, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211683

RESUMO

We developed a prediction model for delirium in elderly patients in the intensive care unit who underwent orthopedic surgery and then temporally validated its predictive power in the same hospital. In the development stage, we designed a prospective cohort study, and 319 consecutive patients aged over 65 years from January 2018 to December 2019 were screened. Demographic characteristics and clinical variables were evaluated, and a final prediction model was developed using the multivariate logistic regression analysis. In the validation stage, 108 patients were included for temporal validation between January 2020 and June 2020. The effectiveness of the model was evaluated through discrimination and calibration. As a result, the prediction model contains seven risk factors (age, anesthesia method, score of mini-mental state examination, hypoxia, major hemorrhage, level of interleukin-6, and company of family members), which had an area under the receiver operating characteristics curve of 0.82 (95% confidence interval 0.76-0.88) and was stable after bootstrapping. The temporal validation resulted in an area under the curve of 0.80 (95% confidence interval 0.67-0.93). Our prediction model had excellent discrimination power in predicting postoperative delirium in elderly patients and could assist intensive care physicians with early prevention.


Assuntos
Delírio , Idoso , Cuidados Críticos , Delírio/diagnóstico , Delírio/etiologia , Delírio/prevenção & controle , Humanos , Unidades de Terapia Intensiva , Estudos Prospectivos , Curva ROC
15.
Cancer Commun (Lond) ; 41(10): 1007-1023, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34196494

RESUMO

BACKGROUND: Tumor metastasis is a major factor for poor prognosis of hepatocellular carcinoma (HCC), but the relationship between ubiquitination and metastasis need to be studied more systematically. We analyzed the ubiquitinome of HCC in this study to have a more comprehensive insight into human HCC metastasis. METHODS: The protein ubiquitination levels in 15 HCC specimens with vascular invasion and 15 without vascular invasion were detected by ubiquitinome. Proteins with significantly different ubiquitination levels between HCCs with and without vascular invasion were used to predict E3 ubiquitin ligases associated with tumor metastasis. The topological network of protein substrates and corresponding E3 ubiquitin ligases was constructed to identify the key E3 ubiquitin ligase. Besides, the growth, migration and invasion ability of LM3 and HUH7 hepatoma cell lines with and without SYVN1 expression interference were measured by cell proliferation assay, subcutaneous tumor assay, umphal vein endothelium tube formation assay, transwell migration and invasion assays. Finally, the interacting proteins of SYVN1 were screened and verified by protein interaction omics, immunofluorescence, and immunoprecipitation. Ubiquitin levels of related protein substrates in LM3 and HUH7 cells were compared in negative control, SYVN1 knockdown, and SYVN1 overexpression groups. RESULTS: In this study, our whole-cell proteomic dataset and ubiquitinomic dataset contained approximately 5600 proteins and 12,000 ubiquitinated sites. We discovered increased ubiquitinated sites with shorter ubiquitin chains during the progression of HCC metastasis. In addition, proteomic and ubiquitinomic analyses revealed that high expression of E3 ubiquitin-protein ligase SYVN1 is related with tumor metastasis. Furthermore, we found that SYVN1 interacted with heat shock protein 90 (HSP90) and impacted the ubiquitination of eukaryotic elongation factor 2 kinase (EEF2K). CONCLUSIONS: The ubiquitination profiles of HCC with and without vascular invasion were significantly different. SYVN1 was the most important E3 ubiquitin-protein ligase responsible for this phenomenon, and it was related with tumor metastasis and growth. Therefore, SYVN1 might be a potential therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/genética , Proteômica , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
16.
Front Microbiol ; 12: 629971, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664719

RESUMO

INTRODUCTION: Human adenovirus (HAdV) is a common pathogen in children with acute respiratory infections (ARIs). The aim was to describe the epidemiology, molecular, and clinical characteristics of HAdV among children hospitalized with ARIs in Wenzhou in southeastern China. METHODOLOGY: From January 2018 to December 2019, nasopharyngeal swab or sputum specimens were prospectively collected from hospitalized children with ARIs. HAdV was detected using direct immunofluorescence. We used a multiplex PCR assay combined with capillary electrophoresis targeting the hexon gene's hypervariable region to identify HAdV types 1, 2, 3, 4, 5, 7, 14, 21, 37, 40, 41, and 55. We analyzed the epidemiological, molecular, and clinical data according to the HAdV type. RESULTS: HAdVs were detected in 1,059 (3.5%) of the total of 30,543 children tested. A total of 947 cases with monotype HAdV identified by the PCR assay were included in the analysis. HAdV-3 (415/947, 43.8%), HAdV-7 (318/947, 33.6%), HAdV-2 (108/947, 11.4%), and HAdV-1 (70/947, 7.4%) were the predominant types. Of the 550 (58.1%) cases detected from December 2018 to August 2019, HAdV-3, and HAdV-7 were the main types. The main diagnoses included 358 cases of pneumonia, 232 cases of tonsillitis, 198 cases of bronchitis, and 159 cases of upper respiratory tract infection (URTI). Among children with pneumonia the main types were HAdV-7 (51.1%), HAdV-3 (36.9%), and HAdV-1 (2.2%). Among children with bronchitis, the main types were HAdV-3 (48.0%), HAdV-7 (28.3%), and HAdV-2 (10.6%). Among children with URTIs, the main types were HAdV-3 (49.7%), HAdV-7 (22.6%), and HAdV-2 (13.2%). Among children with tonsillitis, the main types were HAdV-3 (47.4%), HAdV-2 (22.4%), and HAdV-7 (18.5%). In total, 101 (55.2%) patients required supplemental oxygen, 15 (8.2%) required critical care, and 1 child (0.5%) with HAdV-7 pneumonia died. CONCLUSION: HAdV-3 -7, -2, and -1 were the predominant types identified in hospitalized children with ARIs in Wenzhou. From December 2018 to August 2019, there were outbreaks of HAdV-3 and -7. There were significant differences in HAdV types among children with pneumonia, tonsillitis, bronchitis, and URTI. HAdV-7 can cause more severe pneumonia in children than HAdV-3.

17.
J Ovarian Res ; 14(1): 38, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627162

RESUMO

OBJECTIVE: To investigate the detailed roles and mechanisms of tumor-derived exosomes in progression and metastasis of ovarian cancer in vitro. METHODS: Exosomes were isolated by differential centrifugation method; the morphology, size and biological markers of exosomes were separately defined by transmission electron microscopy, nanoS90 and Western blotting; Trans-well chambers assay was used to assess the ability of migration and invasion of recipient cells uptaking the exosomes from HO8910PM cells. The downstream molecule was screened by mass spectrometry.CD44 was identified by western blotting and the function of CD44 was identified by trans-well chambers assay and CCK8 assay. RESULTS: Exosomes derived from HO8910PM cells could be transferred to HO8910 cells and promote cell migration and invasion in the recipient cells of ovarian cancer. And CD44 could be transferred to the HO8910 cells through exosomes from HO8910PM cells and influence the migration and invasion ability of HO8910 cells. CONCLUSION: The more aggressive subpopulation can transfer a metastatic phenotype to the less one via secreting exosomes within a heterogeneous tumor. CD44 may be a potential therapeutic approach for ovarian cancer.


Assuntos
Carcinoma Epitelial do Ovário/genética , Movimento Celular/genética , Exossomos/metabolismo , Receptores de Hialuronatos/metabolismo , Neoplasias Ovarianas/genética , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/secundário , Linhagem Celular Tumoral , Feminino , Humanos , Receptores de Hialuronatos/genética , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Metástase Neoplásica/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fenótipo
18.
Biomol Ther (Seoul) ; 29(2): 184-194, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33041265

RESUMO

Histone acetylation is a well-characterized epigenetic modification controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Imbalanced histone acetylation has been observed in many primary cancers. Therefore, efforts have been made to find drugs or small molecules such as HDAC inhibitors that can revert acetylation levels to normal in cancer cells. We observed dose-dependent reduction in the endogenous and exogenous protein expression levels of KAT8 (also known as human MOF), a member of the MYST family of HATs, and its corresponding histone acetylation at H4K5, H4K8, and H4K16 in chemotherapy drug gemcitabine (GEM)-exposed T24 bladder cancer (BLCA) cells. Interestingly, the reduction in MOF and histone H4 acetylation was inversely proportional to GEM-induced γH2AX, an indicator of chemotherapy drug effectiveness. Furthermore, pGL4-MOF-Luc reporter activities were significantly inhibited by GEM, thereby suggesting that GEM utilizes an MOF-mediated anti-BLCA mechanism of action. In the CCK-8, wound healing assays and Transwell® experiments, the additive effects on cell proliferation and migration were observed in the presence of exogenous MOF and GEM. In addition, the promoted cell sensitivity to GEM by exogenous MOF in BLCA cells was confirmed using an Annexin V-FITC/PI assay. Taken together, our results provide the theoretical basis for elucidating the anti-BLCA mechanism of GEM.

19.
BMC Genomics ; 21(1): 601, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32867669

RESUMO

BACKGROUND: It has been reported that nitric oxide (NO) could ameliorate cadmium (Cd) toxicity in tall fescue; however, the underlying mechanisms of NO mediated Cd detoxification are largely unknown. In this study, we investigated the possible molecular mechanisms of Cd detoxification process by comparative transcriptomic and metabolomic approaches. RESULTS: The application of Sodium nitroprusside (SNP) as NO donor decreased the Cd content of tall fescue by 11% under Cd stress (T1 treatment), but the Cd content was increased by 24% when treated with Carboxy-PTIO (c-PTIO) together with Nitro-L-arginine methyl ester (L-NAME) (T2 treatment). RNA-seq analysis revealed that 904 (414 up- and 490 down-regulated) and 118 (74 up- and 44 down-regulated) DEGs were identified in the T1 vs Cd (only Cd treatment) and T2 vs Cd comparisons, respectively. Moreover, metabolite profile analysis showed that 99 (65 up- and 34-down- regulated) and 131 (45 up- and 86 down-regulated) metabolites were altered in the T1 vs Cd and T2 vs Cd comparisons, respectively. The integrated analyses of transcriptomic and metabolic data showed that 81 DEGs and 15 differentially expressed metabolites were involved in 20 NO-induced pathways. The dominant pathways were antioxidant activities such as glutathione metabolism, arginine and proline metabolism, secondary metabolites such as flavone and flavonol biosynthesis and phenylpropanoid biosynthesis, ABC transporters, and nitrogen metabolism. CONCLUSIONS: In general, the results revealed that there are three major mechanisms involved in NO-mediated Cd detoxification in tall fescue, including (a) antioxidant capacity enhancement; (b) accumulation of secondary metabolites related to cadmium chelation and sequestration; and (c) regulation of cadmium ion transportation, such as ABC transporter activation. In conclusion, this study provides new insights into the NO-mediated cadmium stress response.


Assuntos
Adaptação Fisiológica , Cádmio/metabolismo , Festuca/genética , Metaboloma , Óxido Nítrico/metabolismo , Transcriptoma , Cádmio/toxicidade , Festuca/metabolismo , Estresse Fisiológico
20.
Aging (Albany NY) ; 12(11): 10969-10982, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32516131

RESUMO

Inflammation is a biological process associated with multiple human disorders such as autoimmune diseases and metabolic diseases. Therefore, alleviation of inflammation is important for disease prevention or treatment. Recently, deubiquitinating enzymes (DUBs), especially ubiquitin specific protease-7 (USP7) attracts increasing attention as a potential drug target for inflammation. As an inhibitor of USP7, P22077 has been used to study the roles of USP7 in inflammatory response and neuroblastoma growth. However, the role and precise mechanism of P22077 in anti-inflammatory is still indistinct. In this study, we demonstrated that P22077 could attenuate the release of pro-inflammatory factors including TNF-α, IL-1ß, IL-6 and NO, suppress mRNA expression of COX-2 and iNOS, and inhibit activation of NF-κB and MAPKs signaling pathways in Raw264.7 cells and mouse peritoneal macrophages after LPS stimulation. In vivo study showed that P22077 could relieve inflammatory response and reduce the lung injury in C57BL/6 mice with LPS-induced endotoxemia. Mechanically, P22077 might play an anti-inflammatory role by promoting tumor necrosis factor receptor-associated factor 6 (TRAF6) degradation via K48-linked polyubiquitination. These findings provide a rationale for the role of the P22077 in anti-inflammatory pathway and the promising clinical application of P22077 to treat inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Tiofenos/farmacologia , Ubiquitinação/efeitos dos fármacos , Animais , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Feminino , Inflamação/tratamento farmacológico , Inflamação/etiologia , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA