Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
Small Methods ; : e2400697, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824667

RESUMO

Small molecule-based photothermal agents (PTAs) hold promising future for photothermal therapy; however, unexpected inactivation exerts negative impacts on their application clinically. Herein, a self-regenerating PTA strategy is proposed by integrating 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS•+) with a thermodynamic agent (TDA) 2,2'-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (AIPH). Under NIR laser, the photothermal effect of ABTS•+ accelerates the production of alkyl radicals by AIPH, which activates the regeneration of ABTS•+, thus creating a continuous positive feedback loop between photothermal and thermodynamic effects. The combination of ABTS•+ regeneration and alkyl radical production leads to the tandem photothermal and thermodynamic tumor therapy. In vitro and in vivo experiments confirm that the synergistic action of thermal ablation, radical damage, and oxidative stress effectively realizes tumor suppression. This work offers a promising approach to address the unwanted inactivation of PTAs and provides valuable insights for optimizing combination therapy.

2.
Anal Chem ; 96(21): 8754-8762, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38740024

RESUMO

Simultaneous profiling of redox-regulated markers at different cellular sublocations is of great significance for unraveling the upstream and downstream molecular mechanisms of oxidative stress in living cells. Herein, by synchronizing dual target-triggered DNA machineries in one nanoentity, we engineered a DNA walker-driven mass nanotag (MNT) assembly system (w-MNT-AS) that can be sequentially activated by oxidative stress-associated mucin 1 (MUC1) and apurinic/apyrimidinic endonuclease 1 (APE1) from plasma membrane to cytoplasm and induce recycled assembly of MNTs for multiplex detection of the two markers by matrix-assisted laser desorption ionization mass spectrometry (MALDI MS). In the working cascade, the sensing process governs the separate activation of w-MNT-AS by MUC1 and APE1 in diverse locations, while the assembly process contributes to the parallel amplification of the ion signal of the characteristic mass tags. In this manner, the differences between MCF-7, HeLa, HepG2, and L02 cells in membrane MUC1 expression and cytoplasmic APE1 activation were fully characterized. Furthermore, the oxidative stress level and dynamics caused by exogenous H2O2, doxorubicin, and simvastatin were comprehensively demonstrated by tracking the fate of the two markers across different cellular locations. The proposed w-MNT-AS coupled MS method provides an effective route to probe multiple functional molecules that lie at different locations while participating in the same cellular event, facilitating the mechanistic studies on cellular response to oxidative stress and other disease-related cellular processes.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , DNA , Mucina-1 , Estresse Oxidativo , Humanos , Mucina-1/metabolismo , DNA/metabolismo , DNA/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Peróxido de Hidrogênio/metabolismo
3.
Anal Chem ; 96(21): 8837-8843, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38757510

RESUMO

Breast cancer poses the significance of early diagnosis and treatment. Here, we developed an innovative photoelectrochemical (PEC) immunosensor characterized by high-level dual photocurrent signals and exceptional sensitivity. The PEC sensor, denoted as MIL&Ag2S, was constructed by incorporating Ag2S into a metal-organic framework of MIL-101(Cr). This composite not only enhanced electron-hole separation and conductivity but also yielded robust and stable dual photocurrent signals. Through the implementation of signal switching, we achieved the combined detection of cancer antigen 15-3 (CA15-3) and carcinoembryonic antigen (CEA) with outstanding stability, reproducibility, and specificity. The results revealed a linear range for CEA detection spanning 0.01-32 ng/mL, with a remarkably low detection limit of 0.0023 ng/mL. Similarly, for CA15-3 detection, the linear range extended from 0.1 to 320 U/mL, with a low detection limit of 0.014 U/mL. The proposed strategy introduces new avenues for the development of highly efficient, cost-effective, and user-friendly PEC sensors. Furthermore, it holds promising prospects for early clinical diagnosis, contributing to potential breakthroughs in medical detection and ultimately improving patient outcomes.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Antígeno Carcinoembrionário , Técnicas Eletroquímicas , Estruturas Metalorgânicas , Mucina-1 , Compostos de Prata , Estruturas Metalorgânicas/química , Humanos , Neoplasias da Mama/diagnóstico , Antígeno Carcinoembrionário/sangue , Antígeno Carcinoembrionário/análise , Mucina-1/análise , Mucina-1/sangue , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/análise , Compostos de Prata/química , Imunoensaio/métodos , Técnicas Biossensoriais , Feminino , Limite de Detecção , Processos Fotoquímicos , Anticorpos Imobilizados/imunologia , Anticorpos Imobilizados/química
4.
Front Med (Lausanne) ; 11: 1363484, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756948

RESUMO

Objective: This study aimed to evaluate the cost-effectiveness of two Chinese patent medicines, including Kang Ai injection and Shenqi Fuzheng injection with each combined with platinum-based chemotherapy as the first-line treatment for patients with advanced non-small cell lung cancer (NSCLC) in China. Methods: From Chinese healthcare system perspective, a three state Markov model with a cycle of 3 weeks and a 10-year horizon was constructed to derive the incremental cost-effectiveness ratio (ICER). Since only individual patient data of progression-free survival (PFS) of Kang Ai injection group can be obtained, we extrapolated median overall survival (mOS) of Kang Ai injection group and median progression-free survival (mPFS) and mOS of Shenqi Fuzheng injection group based on published literature and methods. Then survival curves were estimated by the method of declining exponential approximation of life expectancy (DEALE), which is based on the assumption that survival follows a declining exponential function. We performed one-way sensitivity analysis and probabilistic sensitivity analysis to test the robustness. Additionally, a scenario analysis was adopted to investigate the impact of using best-fitting distribution for PFS curve of Kang Ai injection group on the economic conclusion. Results: The base-case result indicated that Kang Ai injection group provided 0.217 incremental quality-adjusted life years (QALYs) at an incremental cost of $103.38 compared with Shenqi Fuzheng injection group. The ICER was $476.41/QALY, which was much lower than the willingness to pay threshold of one time the GDP per capita of China in 2022 ($12,070/QALY). Deterministic sensitivity analysis result showed that ICER was most sensitive to the changes in odds ratio (OR) value. The probabilistic sensitivity analysis confirmed the robustness of base-case analysis results. The scenario analysis result showed that by using Log-Normal distribution to fit the PFS curve of Kang Ai injection group and shortening the time horizon to 5 years, the ICER was $4,081.83/QALY, which was still much lower than the willingness to pay threshold. Conclusion: Kang Ai injection combined with platinum-based chemotherapy appeared to be more cost-effective for the treatment of advanced NSCLC than Shenqi Fuzheng injection combined with platinum-based chemotherapy.

5.
Chem Biodivers ; : e202400086, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619074

RESUMO

The endoperoxide group of artemisinins is universally accepted an essential group for their anti-cancer effects. In this study, a series of D-ring-contracted artemisinin derivatives were constructed by combining ring-contracted artemisinin core with fragments of functional heterocyclic molecules or classical CDK4/6 inhibitors to identify more efficacious breast cancer treatment agents. Twenty-six novel hybridized molecules were synthesized and characterized by HRMS, IR, 1H-NMR and 13C NMR. In antiproliferative activities and kinase inhibitory effects assays, we found that the antiproliferative effects of B01 were close to those of the positive control Palbociclib, with GI50 values of 4.87±0.23 µM and 9.97±1.44 µM towards T47D cells and MDA-MB-436 cells respectively. In addition, the results showed that B01 was the most potent compound against CDK6/cyclin D3 kinase, with an IC50 value of 0.135±0.041 µM, and its activity was approximately 1/3 of the positive control Palbociclib.

6.
Acta Pharm Sin B ; 14(3): 1241-1256, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38487006

RESUMO

Sulfation is a crucial and prevalent conjugation reaction involved in cellular processes and mammalian physiology. 3'-Phosphoadenosine 5'-phosphosulfate (PAPS) synthase 2 (PAPSS2) is the primary enzyme to generate the universal sulfonate donor PAPS. The involvement of PAPSS2-mediated sulfation in adenomatous polyposis coli (APC) mutation-promoted colonic carcinogenesis has not been reported. Here, we showed that the expression of PAPSS2 was decreased in human colon tumors along with cancer stages, and the lower expression of PAPSS2 was correlated with poor prognosis in advanced colon cancer. Gut epithelial-specific heterozygous Apc deficient and Papss2-knockout (ApcΔgut-HetPapss2Δgut) mice were created, and the phenotypes were compared to the spontaneous intestinal tumorigenesis of ApcΔgut-Het mice. ApcΔgut-HetPapss2Δgut mice were more sensitive to gut tumorigenesis, which was mechanistically accounted for by the activation of Wnt/ß-catenin signaling pathway due to the suppression of chondroitin sulfation and inhibition of the farnesoid X receptor (FXR)-transducin-like enhancer of split 3 (TLE3) gene regulatory axis. Chondroitin sulfate supplementation in ApcΔgut-HetPapss2Δgut mice alleviated intestinal tumorigenesis. In summary, we have uncovered the protective role of PAPSS2-mediated chondroitin sulfation and bile acids-FXR-TLE3 activation in the prevention of gut carcinogenesis via the antagonization of Wnt/ß-catenin signaling. Chondroitin sulfate may be explored as a therapeutic agent for Papss2 deficiency-associated colonic carcinogenesis.

7.
PLoS One ; 19(3): e0299571, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38466744

RESUMO

Phosphatases can dephosphorylate phosphorylated kinases, leading to their inactivation, and ferroptosis is a type of cell death. Therefore, our aim is to identify phosphatases associated with ferroptosis by analyzing the differentially expressed genes (DEGs) of the Luminal A Breast Cancer (LumABC) cohort from the Cancer Genome Atlas (TCGA). An analysis of 260 phosphatase genes from the GeneCard database revealed that out of the 28 DEGs with high expression, only the expression of pyruvate dehydrogenase phosphatase 2 (PDP2) had a significant correlation with patient survival. In addition, an analysis of DEGs using gene ontology, Kyoto Encyclopedia of Genes and Genomes and gene set enrichment analysis revealed a significant variation in the expression of ferroptosis-related genes. To further investigate this, we analyzed 34 ferroptosis-related genes from the TCGA-LumABC cohort. The expression of long-chain acyl-CoA synthetase 4 (ACSL4) was found to have the highest correlation with the expression of PDP2, and its expression was also inversely proportional to the survival rate of patients. Western blot experiments using the MCF-7 cell line showed that the phosphorylation level of ACSL4 was significantly lower in cells transfected with the HA-PDP2 plasmid, and ferroptosis was correspondingly reduced (p < 0.001), as indicated by data from flow cytometry detection of membrane-permeability cell death stained with 7-aminoactinomycin, lipid peroxidation, and Fe2+. Immunoprecipitation experiments further revealed that the phosphorylation level of ACSL4 was only significantly reduced in cells where PDP2 and ACSL4 co-precipitated. These findings suggest that PDP2 may act as a phosphatase to dephosphorylate and inhibit the activity of ACSL4, which had been phosphorylated and activated in LumABC cells. Further experiments are needed to confirm the molecular mechanism of PDP2 inhibiting ferroptosis.


Assuntos
Neoplasias da Mama , Ferroptose , Feminino , Humanos , Neoplasias da Mama/genética , Coenzima A Ligases/genética , Ferroptose/genética , Peroxidação de Lipídeos , Monoéster Fosfórico Hidrolases , Fosforilação , Piruvato Desidrogenase (Lipoamida)-Fosfatase/metabolismo
8.
Chem Sci ; 15(5): 1829-1839, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38303939

RESUMO

Developing a comprehensive strategy for imaging various biomarkers (i.e., microRNAs and proteases) in vivo is an exceptionally formidable task. Herein, we have designed a deoxyribonucleic acid-gold nanocluster (DNA-AuNC) nanomachine for detecting tumor-related TK1 mRNA and cathepsin B in living cells and in vivo. The DNA-AuNC nanomachine is constructed using AuNCs and DNA modules that incorporate a three component DNA hybrid (TD) and a single-stranded fuel DNA (FD). Upon being internalized into tumor cells, the TK1 mRNA initiates the DNA-AuNC nanomachine through DNA strand displacement cascades, leading to the amplified self-assembly and the aggregation-enhanced emission of AuNCs for in situ imaging. Furthermore, with the aid of a protease nanomediator consisting of a mediator DNA/peptide complex and AuNCs (DpAuNCs), the DNA-AuNC nanomachine can be triggered by the protease-activated disassembly of the DNA/peptide complex on the nanomediator, resulting in the aggregation of AuNCs for in vivo protease amplified detection. It is worth noting that our study demonstrates the impressive tumor permeability and accumulation capabilities of the DNA-AuNC nanomachines via in situ amplified self-assembly, thereby facilitating prolonged imaging of TK1 mRNA and cathepsin B both in vitro and in vivo. This strategy presents a versatile and biomarker-specific paradigm for disease diagnosis.

9.
ACS Nano ; 18(4): 3349-3361, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38230639

RESUMO

Cancer vaccines with the ability to elicit tumor-specific immune responses have attracted significant interest in cancer immunotherapy. A key challenge for effective cancer vaccines is the spatiotemporal codelivery of antigens and adjuvants. Herein, we synthesized a copolymer library containing nine poly(ethylene glycol) methyl ether methacrylate-co-butyl methacrylate-co-2-(azepan-1-yl)ethyl methacrylate (PEGMA-co-BMA-co-C7AMA) graft copolymers with designed proportions of different components to regulate their properties. Among these polymers, C-25, with a C7AMA:BMA ratio at 1.5:1 and PEG wt % of 25%, was screened as the most effective nanovaccine carrier with enhanced ability to induce mouse bone marrow-derived dendritic cell (BMDC) maturation. Additionally, RNA-sequencing (RNA-Seq) analysis revealed that C-25 could activate dendritic cells (DCs) through multisignaling pathways to trigger potent immune effects. Then, the screened C-25 was used to encapsulate the model peptide antigen, OVA257-280, to form nanovaccine C-25/OVA257-280. It was found that the C-25/OVA257-280 nanovaccine could effectively facilitate DC maturation and antigen cross-presentation without any other additional adjuvant and exhibited excellent prophylactic efficacy in the B16F10-OVA tumor model. Moreover, in combination with antiprogrammed cell death protein-ligand 1 (anti-PD-L1), the C-25/OVA257-280 nanovaccine could significantly delay the growth of pre-existing tumors. Therefore, this work developed a minimalist nanovaccine with a simple formulation and high efficiency in activating tumor-specific immune responses, showing great potential for further application in cancer immunotherapy.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Animais , Camundongos , Nanovacinas , Neoplasias/patologia , Antígenos/química , Polímeros , Imunoterapia , Metacrilatos , Células Dendríticas , Camundongos Endogâmicos C57BL , Nanopartículas/química
10.
Nat Methods ; 21(2): 259-266, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38049696

RESUMO

Small extracellular vesicles (sEVs) are emerging as pivotal players in a wide range of physiological and pathological processes. However, a pressing challenge has been the lack of high-throughput techniques capable of unraveling the intricate heterogeneity of sEVs and decoding the underlying cellular behaviors governing sEV secretion. Here we leverage droplet-based single-cell RNA sequencing (scRNA-seq) and introduce an algorithm, SEVtras, to identify sEV-containing droplets and estimate the sEV secretion activity (ESAI) of individual cells. Through extensive validations on both simulated and real datasets, we demonstrate SEVtras' efficacy in capturing sEV-containing droplets and characterizing the secretion activity of specific cell types. By applying SEVtras to four tumor scRNA-seq datasets, we further illustrate that the ESAI can serve as a potent indicator of tumor progression, particularly in the early stages. With the increasing importance and availability of scRNA-seq datasets, SEVtras holds promise in offering valuable extracellular insights into the cell heterogeneity.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Transcriptoma , Algoritmos
11.
J Am Chem Soc ; 145(49): 26557-26568, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38039555

RESUMO

Delivery of CRISPR/Cas9 ribonucleoproteins (RNPs) offers a powerful tool for therapeutic genome editing. However, precise manipulation of CRISPR/Cas9 RNPs to switch the machinery on and off according to diverse disease microenvironments remains challenging. Here, we present dual-chain-locked DNA origami nanocages (DL-DONCs) that can confine Cas9 RNPs in the inner cavity for efficient cargo delivery and dual-marker-responsive genome editing in the specified pathological states. By engineering of ATP or miRNA-21-responsive dsDNAs as chain locks on the DONCs, the permeability of nanocages and accessibility of encapsulated Cas9 RNPs can be finely regulated. The resulting DL-DONCs enabled steric protection of bioactive Cas9 RNPs from premature release and deactivation during transportation while dismounting the dual chain locks in response to molecular triggers after internalization into tumor cells, facilitating the escape of Cas9 RNPs from the confinement for gene editing. Due to the dual-marker-dominated uncaging mechanism, the gene editing efficiency could be exclusively determined by the combined level of ATP and miRNA-21 in the target cellular environment. By targeting the tumor-associated PLK-1 gene, the DL-DONCs-enveloped Cas9 RNPs have demonstrated superior inhibitory effects on the proliferation of tumor cells in vitro and in vivo. The developed DL-DONCs provide a custom-made platform for the precise manipulation of Cas9 RNPs, which can be potentially applied to on-demand gene editing for classified therapy in response to arbitrary disease-associated biomolecules.


Assuntos
Sistemas CRISPR-Cas , MicroRNAs , Ribonucleoproteínas , DNA , Trifosfato de Adenosina
12.
Anal Chem ; 95(47): 17392-17399, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37961783

RESUMO

Combining targeting ability, imaging function, and photothermal/photodynamic therapy into a single agent is highly desired for cancer theranostics. Herein, we developed a one-for-all nanoplatform with N/P/S-codoped fluorescent carbon nanodots (CNDs) for tumor-specific phototheranostics. The CNDs were prepared via a one-pot hydrothermal process using cancer cells as sources of carbon, nitrogen, phosphorus, and sulfur. The obtained N/P/S-codoped CNDs exhibit wide light absorption in the range of 200-900 nm and excitation-dependent emission with high photostability. Importantly, the cancer cell-derived N/P/S-codoped CNDs have outstanding biocompatibility and naturally intrinsic targeted ability for cancer cells as well as dual photothermal/photodynamic effects under 795 nm laser irradiation. Moreover, the photothermal conversion efficiency and singlet oxygen (1O2) generation efficiency were calculated to be 52 and 34%, respectively. These exceptional properties enable CNDs to act as fine theranostic agents for targeted imaging and photothermal-photodynamic synergistic therapy within the NIR therapeutic window. The CNDs prepared in this work are promising for construction as a universal tumor phototheranostic platform.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Carbono/farmacologia , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Medicina de Precisão , Corantes , Nanomedicina Teranóstica/métodos , Linhagem Celular Tumoral
13.
Nat Protoc ; 18(11): 3194-3228, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37794072

RESUMO

Fusing apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like cytidine deaminase with catalytically impaired Cas proteins (e.g., nCas9 or dCas9) provides a novel gene-editing technology, base editing, that grants targeted base substitutions with high efficiency. However, genome-wide and transcriptome-wide off-target mutations are observed in base editing, which raises safety concerns regarding therapeutic applications. Previously, we developed a new base editing system, the transformer base editor (tBE), to induce efficient editing with no observable genome-wide or transcriptome-wide off-target mutations both in mammalian cells and in mice. Here we describe a detailed protocol for the design and application of the tBE. Steps for designing single-guide RNA (sgRNA) and helper sgRNA pairs, making constructs, determining the genome-wide and transcriptome-wide off-target mutations, producing the tBE-containing adeno-associated viruses, delivering adeno-associated viruses into mice and examining the in vivo editing effects are included in this protocol. High-precision base editing by the tBE can be completed within 2-3 weeks (in mammalian cells) or within 6-8 weeks (in mice), with sgRNA-helper sgRNA pairs. The whole process can be collaboratively accomplished by researchers using standard techniques from molecular biology, bioinformatics and mouse husbandry.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Camundongos , Animais , Edição de Genes/métodos , Proteína 9 Associada à CRISPR/metabolismo , Mutação , Mamíferos/genética
14.
Anal Chem ; 95(40): 14914-14924, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37769195

RESUMO

Credible and on-site detection of organophosphorus pesticides (OPs) in complex matrixes is significant for food security and environmental monitoring. Herein, a novel COF/methylene blue@MnO2 (COF/MB@MnO2) composite featured abundant signal loading, a specific recognition unit, and robust oxidase-like activity was successfully prepared through facile assembly processes. The multifunctional composite acted as a homogeneous electrochemical and photothermal dual-mode sensing platform for OPs detection through stimuli-responsive regulation. Without the presence of OPs, the surface MnO2 coating could recognize thiocholine (TCh), originating from acetylcholinesterase (AChE)-catalyzed hydrolysis of acetylthiocholine (ATCh), and exhibited a distinctly amplified diffusion current due to the release of plentiful MB; while the residual MnO2 nanosheets could only catalyze less TMB into oxidized TMB (oxTMB) with a typical near-infrared (NIR) absorption, enabling NIR-driven photothermal assay with a low temperature using a portable thermometer. Based on the inhibitory effect of OPs on AChE activity and OP-regulated generation of TCh, chlorpyrifos as a model target can be accurately detected with a low limit of detection of 0.0632 and 0.108 ng/mL by complementary electrochemical and photothermal measurements, respectively. The present dual-mode sensor was demonstrated to be excellent for application to the reliable detection of OPs in complex environmental and food samples. This work can not only provide a complementary dual-mode method for convenient and on-site detection of OPs in different scenarios but also expand the application scope of the COF-based multifunctional composite in multimodal sensors.


Assuntos
Técnicas Biossensoriais , Praguicidas , Compostos Organofosforados , Acetilcolinesterase , Azul de Metileno , Compostos de Manganês , Óxidos , Técnicas Biossensoriais/métodos
15.
Adv Healthc Mater ; 12(31): e2302016, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37713653

RESUMO

Multimodal cancer therapies show great promise in synergistically enhancing anticancer efficacy through different mechanisms. However, most current multimodal therapies either rely on complex assemblies of multiple functional nanomaterials and drug molecules or involve the use of nanomedicines with poor in vivo degradability/metabolizability, thus restricting their clinical translatability. Herein, a nanoflower-medicine using iron ions, thioguanine (TG), and tetracarboxylic porphyrin (TCPP) are synthesized as building blocks through a one-step hydrothermal method for combined chemo/chemodynamic/photodynamic cancer therapy. The resulting nanoflowers, consisting of low-density Fe2 O3 core and iron complex (Fe-TG and Fe-TCPP compounds) shell, exhibit high accumulation at the tumor site, desirable degradability in the tumor microenvironment (TME), robust suppression of tumor growth and metastasis, as well as effective reinvigoration of host antitumor immunity. Triggered by the low pH in tumor microenvironment, the nanoflowers gradually degrade after internalization, contributing to the effective drug release and initiation of high-efficiency catalytic reactions precisely in tumor sites. Moreover, iron ions can be eliminated from the body through renal clearance after fulfilling their mission. Strikingly, it is also found that the multimodal synergistic therapy effectively elicits the host antitumor immunity without inducing additional toxicity. This easy-manufactured and degradable multimodal therapeutic nanomedicine is promising for clinical precision oncology.


Assuntos
Nanopartículas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Nanopartículas/química , Microambiente Tumoral , Medicina de Precisão , Íons/uso terapêutico , Ferro , Linhagem Celular Tumoral
16.
Hepatol Commun ; 7(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37556373

RESUMO

BACKGROUND: We previously showed that loss of yes-associated protein 1 (YAP) in early liver development (YAPKO) leads to an Alagille syndrome-like phenotype, with failure of intrahepatic bile duct development, severe cholestasis, and chronic hepatocyte adaptations to reduce liver injury. TAZ, a paralog of YAP, was significantly upregulated in YAPKO hepatocytes and interacted with TEA domain family member (TEAD) transcription factors, suggesting possible compensatory activity. METHODS: We deleted both Yap1 and Wwtr1 (which encodes TAZ) during early liver development using the Foxa3 promoter to drive Cre expression, similar to YAPKO mice, resulting in YAP/TAZ double knockout (DKO) and YAPKO with TAZ heterozygosity (YAPKO TAZHET). We evaluated these mice using immunohistochemistry, serum biochemistry, bile acid profiling, and RNA sequencing. RESULTS: DKO mice were embryonic lethal, but their livers were similar to YAPKO, suggesting an extrahepatic cause of death. Male YAPKO TAZHET mice were also embryonic lethal, with insufficient samples to determine the cause. However, YAPKO TAZHET females survived and were phenotypically similar to YAPKO mice, with increased bile acid hydrophilicity and similar global gene expression adaptations but worsened the hepatocellular injury. TAZ heterozygosity in YAPKO impacted the expression of canonical YAP targets Ctgf and Cyr61, and we found changes in pathways regulating cell division and inflammatory signaling correlating with an increase in hepatocyte cell death, cell cycling, and macrophage recruitment. CONCLUSIONS: YAP loss (with or without TAZ loss) aborts biliary development. YAP and TAZ play a codependent critical role in foregut endoderm development outside the liver, but they are not essential for hepatocyte development. TAZ heterozygosity in YAPKO livers increased cell cycling and inflammatory signaling in the setting of chronic injury, highlighting genes that are especially sensitive to TAZ regulation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Carcinoma Hepatocelular , Colestase , Neoplasias Hepáticas , Proteínas de Sinalização YAP , Animais , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Endoderma/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Transativadores/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP/genética , Feminino
17.
Angew Chem Int Ed Engl ; 62(39): e202308950, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37553293

RESUMO

Protein coronas are present extensively at the bio-nano interface due to the natural adsorption of proteins onto nanomaterials in biological fluids. Aside from the robust property of nanoparticles, the dynamics of the protein corona shell largely define their chemical identity by altering interface properties. However, the soft coronas are normally complex and rapidly changing. To real-time monitor the entire formation, we report here a self-regulated electrochemiluminescence (ECL) microscopy based on the interaction of the Ru(bpy)3 3+ with the nanoparticle surface. Thus, the heterogeneity of the protein corona is in situ observed in single nanoparticle "cores" before and after loading drugs in nanomedicine carriers. The label-free, optical stable and dynamic ECL microscopy minimize misinterpretations caused by the variation of nanoparticle size and polydispersity. Accordingly, the synergetic actions of proteins and nanoparticles properties are uncovered by chemically engineered protein corona. After comparing the protein corona formation kinetics in different complex systems and different nanomedicine carriers, the universality and accuracy of this technique were well demonstrated via the protein corona formation kinetics curves regulated by competitive adsorption of Ru(bpy)3 3+ and multiple proteins on surface of various carriers. The work is of great significance for studying bio-nano interface in drug delivery and targeted cancer treatment.


Assuntos
Nanopartículas , Coroa de Proteína , Coroa de Proteína/química , Microscopia , Nanomedicina/métodos , Cinética , Proteínas/química , Nanopartículas/química
18.
Anal Chem ; 95(30): 11526-11534, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37463345

RESUMO

Electrochemiluminescence (ECL) imaging, as an optical technology, has been developed at full tilt in the field of life science and nanomaterials. However, the relatively low ECL intensity or the high co-reactant concentration needed in the electrochemical reaction blocks its practical application. Here, we developed an ECL imaging system based on the rGO-TiO2-x composite material, where the co-reactant, reactive oxygen species (ROS), is generated in situ under the synergetic effect of of ultrasound (US) and electric irradiation. The rGO-TiO2-x composites facilitate the separation of electron (e-) and hole (h+) pairs and inhibit recombination triggered by external US irradiation due to the high electroconductivity of rGO and oxygen-deficient structures of TiO2, thus significantly boosting ROS generation. Furthermore, the increased defects on rGO accelerate the electron transfer rate, improving the electrocatalytic performance of the composite and forming more ROS. This high ultrasonic-electric synergistic efficacy is demonstrated through the enhancement of photon emission. Compared with the luminescence intensity triggered by US irradiation and electric field, an enhancement of ∼20-fold and 10-fold of the US combined with electric field-triggered emission is observed from this composite. Under the optimized conditions, using dopamine (DA) as a model target, the sensitivity of the US combined ECL strategy for detection of DA is two orders of magnitude higher than that of the ECL method. The successful detection of DA at low concentrations makes us believe that this strategy provides the possibility of applying ECL imaging for cellular single-molecule analysis and cancer therapy.

19.
Clin Lab ; 69(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37307112

RESUMO

BACKGROUND: This study investigates the value of apolipoprotein A1 in assessing the occurrence and prognosis of cardiovascular events in peritoneal dialysis patients. METHODS: A retrospective analysis was conducted based on the clinical information of 80 end-stage renal disease patients who underwent peritoneal dialysis at Zhuji People's Hospital Zhejiang Province from January 2015 to December 2016. Based on the median value of apolipoprotein A1, patients were evenly distributed as either High Apolipoprotein A1 Group (H-ApoA1, > 1.145g/L, n = 40) or Low Apolipoprotein A1 Group (L-ApoA1, < 1.145g/L, n = 40). RESULTS: When compared with the H-ApoA1 group, the L-ApoA1 group patients were observed to have higher BMI, total Kt/V, hemoglobin, AKP, glycated hemoglobin, HOMA-IR, HDL levels, while simultaneously having lower total Ccr, triglycerides, total cholesterol, LDL, CRP levels (p < 0.05). Further analysis found that the all-cause mortality rate, cardiovascular death rate, and cardiovascular event rates were significantly higher in L-ApoA1 group patients than the H-ApoA1 group (p < 0.05); no statistical significance was found for mortality rates due to infection, abandon treatment, tumor, failure, gastrointestinal bleeding or undetermined reasons between the two groups (p > 0.05). In addition, the median all-cause mortality and median occurrence of cardiovascular events of L-ApoA1 group patients were observed to be shorter than the H-ApoA1 group (p < 0.05), and apolipoprotein A1 is a risk factor for all-cause mortality rate and cardiovascular occurrence end-point events (p < 0.05). CONCLUSIONS: Peritoneal dialysis patients with a reduced level of apolipoprotein A1 have a poorer prognosis and more severe cardiovascular events.


Assuntos
Doenças Cardiovasculares , Diálise Peritoneal , Humanos , Apolipoproteína A-I , Estudos Retrospectivos , Prognóstico
20.
Small Methods ; 7(9): e2300055, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37330646

RESUMO

In lung cancer diagnosis, folate receptor (FR)-based circulating tumor cell (CTC) has shown its ability to distinguish malignancy from benign disease to some extent. However, there are still some patients that cannot be identified by FR-based CTC detection. And studies comparing the characteristics between true positive (TP) and false negative (FN) patients are few. Thus, the study comprehensively analyzes the clinicopathological characteristics of FN and TP patients in the current study. According to inclusion and exclusion criteria, 3420 patients are enrolled. Combining the pathological diagnosis with CTC results, patients are divided into FN and TP groups, and clinicopathological characteristics are compared between two groups. Compared with TP patients, FN patients have smaller tumor, early T stage, early pathological stage, and without lymph node metastasis. Epidermal growth factor receptor (EGFR) mutation status is different between FN and TP group. And this result is also demonstrated in lung adenocarcinoma subgroup but not in lung squamous cell carcinoma subgroup. Tumor size, T stage, pathological stage, lymph node metastasis, and EGFR mutation status may influence the accuracy of FR-based CTC detection in lung cancer. However, further prospective studies are needed to confirm the findings.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Metástase Linfática/diagnóstico , Células Neoplásicas Circulantes/metabolismo , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/genética , Pulmão/metabolismo , Pulmão/patologia , Receptores ErbB/genética , Ácido Fólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA