Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 117: 154903, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37301185

RESUMO

BACKGROUND: Phosphorylated Smad3 isoforms are reversible and antagonistic, and the tumour-suppressive pSmad3C can shift to an oncogenic pSmad3L signal. In addition, Nrf2 has a two-way regulatory effect on tumours, protecting normal cells from carcinogens and promoting tumour cell survival in chemotherapeutics. Accordingly, we hypothesised that the transformation of pSmad3C/3L is the basis for Nrf2 to produce both pro- and/or anti-tumourigenic effects in hepatocarcinogenesis. Astragaloside IV (AS-IV), the major component of Astragalus membranaceus, exerts anti-fibrogenic and carcinogenic actions. Lately, AS-IV administration could delay the occurrence of primary liver cancer by persistently inhibiting the fibrogenesis and regulating pSmad3C/3 L and Nrf2/HO-1 pathways synchronously. However, effect of AS-IV on hepatocarcinogenesis implicated in the bidirectional cross-talking of pSmad3C/3 L and Nrf2/HO-1 signalling, especially which one contributes palpably than the other still remains unclear. PURPOSE: This study aims to settle the above questions by using in vivo (pSmad3C+/- and Nrf2-/- mice) and in vitro (plasmid- or lentivirus- transfected HepG2 cells) models of HCC. STUDY DESIGN AND METHODS: The correlation of Nrf2 to pSmad3C/pSmad3L in HepG2 cells was analysed by Co-immunoprecipitation and dual-luciferase reporter assay. Pathological changes of Nrf2, pSmad3C, and pSmad3L in human HCC patients, pSmad3C+/- mice, and Nrf2-/- mice were gauged by immunohistochemical, haematoxylin and eosin staining, Masson, and immunofluorescence assays. Finally, western blot and qPCR were used to verify the bidirectional cross-talking of pSmad3C/3L and Nrf2/HO-1 signalling protein and mRNA in vivo and in vitro models of HCC. RESULTS: Histopathological manifestations and biochemical indicators revealed that pSmad3C+/- could abate the ameliorative effects of AS-IV on fibrogenic/carcinogenic mice with Nrf2/HO-1 deactivation and pSmad3C/p21 transform to pSmad3L/PAI-1//c-Myc. As expected, cell experiments confirmed that upregulating pSmad3C boosts the inhibitory activity of AS-IV on phenotypes (cell proliferation, migration and invasion), followed by a shift of pSmad3L to pSmad3C and activation of Nrf2/HO-1. Synchronously, experiments in Nrf2-/- mice and lentivirus-carried Nrf2shRNA cell echoed the results of pSmad3C knockdown. Complementarily, Nrf2 overexpression resulted in the opposite result. Furthermore, Nrf2/HO-1 contributes to AS-IV's anti-HCC effect palpably compared with pSmad3C/3L. CONCLUSION: These studies highlight that harnessing the bidirectional crosstalk pSmad3C/3 L and Nrf2/HO-1, especially Nrf2/HO-1 signalling, acts more effectively in AS-IV's anti-hepatocarcinogenesis, which may provide an important theoretical foundation for the use of AS-IV against HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Fator 2 Relacionado a NF-E2 , Transformação Celular Neoplásica
2.
J Exp Med ; 213(8): 1555-70, 2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27432944

RESUMO

Activation of various C-type lectin receptors (CLRs) initiates potent proinflammatory responses against various microbial infections. However, how activated CLRs are negatively regulated remains unknown. In this study, we report that activation of CLRs Dectin-2 and Dectin-3 by fungi infections triggers them for ubiquitination and degradation in a Syk-dependent manner. Furthermore, we found that E3 ubiquitin ligase Casitas B-lineage lymphoma protein b (Cbl-b) mediates the ubiquitination of these activated CLRs through associating with each other via adapter protein FcR-γ and tyrosine kinase Syk, and then the ubiquitinated CLRs are sorted into lysosomes for degradation by an endosomal sorting complex required for transport (ESCRT) system. Therefore, the deficiency of either Cbl-b or ESCRT subunits significantly decreases the degradation of activated CLRs, thereby resulting in the higher expression of proinflammatory cytokines and inflammation. Consistently, Cbl-b-deficient mice are more resistant to fungi infections compared with wild-type controls. Together, our study indicates that Cbl-b negatively regulates CLR-mediated antifungal innate immunity, which provides molecular insight for designing antifungal therapeutic agents.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Candida albicans/imunologia , Candidíase/imunologia , Lectinas Tipo C/imunologia , Proteínas Proto-Oncogênicas c-cbl/imunologia , Receptores Imunológicos/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Candidíase/genética , Humanos , Imunidade Inata , Lectinas Tipo C/genética , Camundongos , Camundongos Knockout , Proteólise , Proteínas Proto-Oncogênicas c-cbl/genética , Receptores Imunológicos/genética , Quinase Syk/genética , Quinase Syk/imunologia , Ubiquitinação/genética , Ubiquitinação/imunologia
3.
J Biol Chem ; 289(43): 30052-62, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25202022

RESUMO

Previous studies indicate that both Dectin-3 (also called MCL or Clec4d) and Mincle (also called Clec4e), two C-type lectin receptors, can recognize trehalose 6,6'-dimycolate (TDM), a cell wall component from mycobacteria, and induce potent innate immune responses. Interestingly, stimulation of Dectin-3 by TDM can also induce Mincle expression, which may enhance the host innate immune system to sense Mycobacterium infection. However, the mechanism by which Dectin-3 induces Mincle expression is not fully defined. Here, we show that TDM-induced Mincle expression is dependent on Dectin-3-mediated NF-κB, but not nuclear factor of activated T-cells (NFAT), activation, and Dectin-3 induces NF-κB activation through the CARD9-BCL10-MALT1 complex. We found that bone marrow-derived macrophages from Dectin-3-deficient mice were severely defective in the induction of Mincle expression in response to TDM stimulation. This defect is correlated with the failure of TDM-induced NF-κB activation in Dectin-3-deficient bone marrow-derived macrophages. Consistently, inhibition of NF-κB, but not NFAT, impaired TDM-induced Mincle expression, whereas NF-κB, but not NFAT, binds to the Mincle promoter. Dectin-3-mediated NF-κB activation is dependent on the CARD9-Bcl10-MALT1 complex. Finally, mice deficient for Dectin-3 or CARD9 produced much less proinflammatory cytokines and keyhole limpet hemocyanin (KLH)-specific antibodies after immunization with an adjuvant containing TDM. Overall, this study provides the mechanism by which Dectin-3 induces Mincle expression in response to Mycobacterium infection, which will have significant impact to improve adjuvant and design vaccine for antimicrobial infection.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspases/metabolismo , Fatores Corda/farmacologia , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Proteínas de Membrana/genética , NF-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores Imunológicos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Adjuvantes Imunológicos/farmacologia , Animais , Proteína 10 de Linfoma CCL de Células B , Proteínas Adaptadoras de Sinalização CARD/deficiência , Caspases/deficiência , Citocinas/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lectinas Tipo C/deficiência , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa , Fatores de Transcrição NFATC/metabolismo , Proteínas de Neoplasias/deficiência , Regiões Promotoras Genéticas/genética , Multimerização Proteica/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Receptores Imunológicos/deficiência , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA