Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38336953

RESUMO

A dramatic reduction in mortality among people living with HIV (PLWH) has been achieved during the modern antiretroviral therapy (ART) era. However, ART does not restore gut barrier function even after long-term viral suppression, allowing microbial products to enter the systemic blood circulation and induce chronic immune activation. In PLWH, a chronic state of systemic inflammation exists and persists, which increases the risk of development of inflammation-associated non-AIDS comorbidities such as metabolic disorders, cardiovascular diseases, and cancer. Clostridium butyricum is a human butyrate-producing symbiont present in the gut microbiome. Convergent evidence has demonstrated favorable effects of C. butyricum for gastrointestinal health, including maintenance of the structural and functional integrity of the gut barrier, inhibition of pathogenic bacteria within the intestine, and reduction of microbial translocation. Moreover, C. butyricum supplementation has been observed to have a positive effect on various inflammation-related diseases such as diabetes, ulcerative colitis, and cancer, which are also recognized as non-AIDS comorbidities associated with epithelial gut damage. There is currently scant published research in the literature, focusing on the influence of C. butyricum in the gut of PLWH. In this hypothesis review, we speculate the use of C. butyricum as a probiotic oral supplementation may well emerge as a potential future synergistic adjunctive strategy in PLWH, in tandem with ART, to restore and consolidate intestinal barrier integrity, repair the leaky gut, prevent microbial translocation from the gut, and reduce both gut and systemic inflammation, with the ultimate objective of decreasing the risk for development of non-AIDS comorbidities in PLWH.

3.
Stem Cell Res ; 60: 102694, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35131736

RESUMO

p15INK4b (cyclin-dependent kinase inhibitor 2B, CDKN2B, p15), a cyclin-dependent kinase inhibitor (CKI) belonging to the INK4 family, plays an important role in hematopoiesis. Its expression level was positively related to the blockage effects of RUNX1b at the early stage. Experiments using human embryonic stem cell (hESC) lines with inducible p15 expression suggested that p15 overexpression can significantly decrease the proportion of KDR+ cells in S and G2-M stages 4 days after induction from day 0. Moreover, p15 overexpression from the early stage can decrease production of CD34highCD43- cells and their derivative populations, but not CD34lowCD43- cells. These effects were weakened if induction was delayed and disappeared if induction started after day 6. All these effects were counteracted by inhibition of TGF-ß signaling. TGF-ß1 stimulation elicited similar effects as p15 overexpression. RUNX1 overexpression and activation of the TGF-ß signaling pathway upregulate the expression of p15, which is partially responsible for blockade of hematopoiesis and relevant to a change in the cell cycle status. However, it is possible that other mechanisms are involved in the regulation of hematopoiesis.


Assuntos
Proteínas de Ciclo Celular , Subunidade alfa 2 de Fator de Ligação ao Core , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Hematopoese , Humanos , Fator de Crescimento Transformador beta/metabolismo , Proteínas Supressoras de Tumor
4.
Sci Rep ; 11(1): 24014, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907231

RESUMO

Deficiency of P18 can significantly improve the self-renewal potential of hematopoietic stem cells (HSC) and the success of long-term engraftment. However, the effects of P18 overexpression, which is involved in the inhibitory effects of RUNX1b at the early stage of hematopoiesis, have not been examined in detail. In this study, we established inducible P18/hESC lines and monitored the effects of P18 overexpression on hematopoietic differentiation. Induction of P18 from day 0 (D0) dramatically decreased production of CD34highCD43- cells and derivative populations, but not that of CD34lowCD43- cells, changed the cell cycle status and apoptosis of KDR+ cells and downregulated the key hematopoietic genes at D4, which might cause the severe blockage of hematopoietic differentiation at the early stage. By contrast, induction of P18 from D10 dramatically increased production of classic hematopoietic populations and changed the cell cycle status and apoptosis of CD45+ cells at D14. These effects can be counteracted by inhibition of TGF-ß or NF-κB signaling respectively. This is the first evidence that P18 promotes hematopoiesis, a rare property among cyclin-dependent kinase inhibitors (CKIs).


Assuntos
Diferenciação Celular , Inibidor de Quinase Dependente de Ciclina p18/biossíntese , Regulação da Expressão Gênica , Células-Tronco Embrionárias Humanas/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p18/genética , Humanos , NF-kappa B/genética , Fator de Crescimento Transformador beta/genética
5.
Cell Regen ; 10(1): 9, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33426581

RESUMO

BACKGROUND: The HOX genes are master regulators of embryogenesis that are also involved in hematopoiesis. HOXA9 belongs to a cluster of HOX genes that play extensively studied roles in hematopoiesis and leukemogenesis. METHODS: We established HOXA9-inducible human embryonic stem cells (HOXA9/hESCs) with normal pluripotency and potential for hematopoiesis, which could be used to analyze gene function with high accuracy. HOXA9/hESCs co-cultured with aorta-gonad-mesonephros-derived stromal cells (AGM-S3) were induced to overexpress HOXA9 with doxycycline (DOX) at various times after hematopoiesis started and then subjected to flow cytometry. RESULTS: Induction of HOXA9 from Day 4 (D4) or later notably promoted hematopoiesis and also increased the production of CD34+ cells and derived populations. The potential for myelogenesis was significantly elevated while the potential for erythrogenesis was significantly reduced. At D14, a significant promotion of S phase was observed in green fluorescent protein positive (GFP+) cells overexpressing HOXA9. NF-κB signaling was also up-regulated at D14 following induction of HOXA9 on D4. All of these effects could be counteracted by addition of an NF-κB inhibitor or siRNA against NFKB1 along with DOX. CONCLUSIONS: Overexpression of HOXA9 starting at D4 or later during hematopoiesis significantly promoted hematopoiesis and the production of myeloid progenitors while reduced the production of erythroid progenitors, indicating that HOXA9 plays a key role in hematopoiesis and differentiation of hematopoietic lineages.

6.
Blood Sci ; 2(4): 117-128, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35400027

RESUMO

The hematopoietic function of HOXC4 has not been extensively investigated. Our research indicated that induction of HOXC4 in co-culture system from D10 significantly promoted productions of most hematopoietic progenitor cells. CD34-CD43+ cells could be clearly classified into CD34-CD43low and CD34-CD43high sub-populations at D14. The former cells had greater myelogenic potential, and their production was not significantly influenced by induction of HOXC4. By contrast, the latter cells had greater potential to differentiate into megakaryocytes and erythroid cells, and thus had properties of erythroid-megakaryocyte common progenitors, which abundance was increased by ∼2-fold when HOXC4 was induced from D10. For CD34-CD43low, CD34+CD43+, and CD34-CD43high sub-populations, CD43 level served as a natural index for the tendency to undergo hematopoiesis. Induction of HOXC4 from D10 caused more CD43+ cells sustain in S-phase with up-regulation of NF-κB signaling, which could be counteracted by inhibition of NF-κB signaling. These observations suggested that promotion of hematopoiesis by HOXC4 is closely related to NF-κB signaling and a change in cell-cycle status, which containing potential of clinical applications.

7.
Anesthesiology ; 127(1): 147-163, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28437360

RESUMO

BACKGROUND: Ten-eleven translocation methylcytosine dioxygenase converts 5-methylcytosine in DNA to 5-hydroxymethylcytosine, which plays an important role in gene transcription. Although 5-hydroxymethylcytosine is enriched in mammalian neurons, its regulatory function in nociceptive information processing is unknown. METHODS: The global levels of 5-hydroxymethylcytosine and ten-eleven translocation methylcytosine dioxygenase were measured in spinal cords in mice treated with complete Freund's adjuvant. Immunoblotting, immunohistochemistry, and behavioral tests were used to explore the downstream ten-eleven translocation methylcytosine dioxygenase-dependent signaling pathway. RESULTS: Complete Freund's adjuvant-induced nociception increased the mean levels (± SD) of spinal 5-hydroxymethylcytosine (178 ± 34 vs. 100 ± 21; P = 0.0019), ten-eleven translocation methylcytosine dioxygenase-1 (0.52 ± 0.11 vs. 0.36 ± 0.064; P = 0.0088), and ten-eleven translocation methylcytosine dioxygenase-3 (0.61 ± 0.13 vs. 0.39 ± 0.08; P = 0.0083) compared with levels in control mice (n = 6/group). The knockdown of ten-eleven translocation methylcytosine dioxygenase-1 or ten-eleven translocation methylcytosine dioxygenase-3 alleviated thermal hyperalgesia and mechanical allodynia, whereas overexpression cytosinethem in naïve mice (n = 6/group). Down-regulation of spinal ten-eleven translocation methylcytosine dioxygenase-1 and ten-eleven translocation methylcytosine dioxygenase-3 also reversed the increases in Fos expression (123 ± 26 vs. 294 ± 6; P = 0.0031; and 140 ± 21 vs. 294 ± 60; P = 0.0043, respectively; n = 6/group), 5-hydroxymethylcytosine levels in the Stat3 promoter (75 ± 16.1 vs. 156 ± 28.9; P = 0.0043; and 91 ± 19.1 vs. 156 ± 28.9; P = 0.0066, respectively; n = 5/group), and consequent Stat3 expression (93 ± 19.6 vs. 137 ± 27.5; P = 0.035; and 72 ± 15.2 vs. 137 ± 27.5; P = 0.0028, respectively; n = 5/group) in complete Freund's adjuvant-treated mice. CONCLUSIONS: This study reveals a novel epigenetic mechanism for ten-eleven translocation methylcytosine dioxygenase-1 and ten-eleven translocation methylcytosine dioxygenase-3 in the modulation of spinal nociceptive information via targeting of Stat3.


Assuntos
Citosina/análogos & derivados , Citosina/metabolismo , Metilação de DNA/fisiologia , Dioxigenases/metabolismo , Inflamação/fisiopatologia , Dor Nociceptiva/fisiopatologia , 5-Metilcitosina/metabolismo , Animais , Dor Crônica/fisiopatologia , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Medula Espinal/fisiopatologia
8.
Medicine (Baltimore) ; 95(49): e5479, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27930529

RESUMO

The aim of this study is to compare the effects of propofol and sevoflurane anesthesia on perioperative immune response in patients undergoing laparoscopic radical hysterectomy for cervical cancer.Sixty patients with cervical cancer scheduled for elective laparoscopic radical hysterectomy under general anesthesia were randomized into 2 groups. TIVA group received propofol induction and maintenance and SEVO group received sevoflurane induction and maintenance. Blood samples were collected at 30 min before induction (T0); the end of the operation (T1); and 24 h (T2), 48 h (T3), and 72 h (T4) after operation. The T lymphocyte subsets (including CD3+ cells, CD4+ cells, and CD8+ cells) and CD4+/CD8+ ratio, natural killer (NK) cells, and B lymphocytes were analyzed by flow cytometry.After surgery, all immunological indicators except CD8+ cells were significantly decreased in both groups compared to basal levels in T0, and the counts of CD3+ cells, CD4+ cells, NK cells, and the CD4+/CD8+ ratios were significantly lower in the SEVO groups than that in the TIVA group. However, the numbers of B cells were comparable at all the time points between 2 groups.Laparoscopic radical hysterectomy for cervical cancer is associated with postoperative lymphopenia. In terms of protecting circulating lymphocytes, propofol is superior to sevoflurane.


Assuntos
Neoplasias do Colo do Útero/cirurgia , Adenocarcinoma/sangue , Adenocarcinoma/cirurgia , Anestésicos Inalatórios/administração & dosagem , Anestésicos Intravenosos/administração & dosagem , Relação CD4-CD8 , Carcinoma de Células Escamosas/sangue , Carcinoma de Células Escamosas/cirurgia , Feminino , Humanos , Histerectomia , Laparoscopia , Éteres Metílicos/administração & dosagem , Pessoa de Meia-Idade , Propofol/administração & dosagem , Sevoflurano , Subpopulações de Linfócitos T , Resultado do Tratamento , Neoplasias do Colo do Útero/sangue
9.
J Neurosci ; 36(9): 2769-81, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26937014

RESUMO

DNA 5-hydroxylmethylcytosine (5hmC) catalyzed by ten-eleven translocation methylcytosine dioxygenase (TET) occurs abundantly in neurons of mammals. However, the in vivo causal link between TET dysregulation and nociceptive modulation has not been established. Here, we found that spinal TET1 and TET3 were significantly increased in the model of formalin-induced acute inflammatory pain, which was accompanied with the augment of genome-wide 5hmC content in spinal cord. Knockdown of spinal TET1 or TET3 alleviated the formalin-induced nociceptive behavior and overexpression of spinal TET1 or TET3 in naive mice produced pain-like behavior as evidenced by decreased thermal pain threshold. Furthermore, we found that TET1 or TET3 regulated the nociceptive behavior by targeting microRNA-365-3p (miR-365-3p). Formalin increased 5hmC in the miR-365-3p promoter, which was inhibited by knockdown of TET1 or TET3 and mimicked by overexpression of TET1 or TET3 in naive mice. Nociceptive behavior induced by formalin or overexpression of spinal TET1 or TET3 could be prevented by downregulation of miR-365-3p, and mimicked by overexpression of spinal miR-365-3p. Finally, we demonstrated that a potassium channel, voltage-gated eag-related subfamily H member 2 (Kcnh2), validated as a target of miR-365-3p, played a critical role in nociceptive modulation by spinal TET or miR-365-3p. Together, we concluded that TET-mediated hydroxymethylation of miR-365-3p regulates nociceptive behavior via Kcnh2. SIGNIFICANCE STATEMENT: Mounting evidence indicates that epigenetic modifications in the nociceptive pathway contribute to pain processes and analgesia response. Here, we found that the increase of 5hmC content mediated by TET1 or TET3 in miR-365-3p promoter in the spinal cord is involved in nociceptive modulation through targeting a potassium channel, Kcnh2. Our study reveals a new epigenetic mechanism underlying nociceptive information processing, which may be a novel target for development of antinociceptive drugs.


Assuntos
Citosina/análogos & derivados , Metilação de DNA/genética , MicroRNAs/metabolismo , Dor/fisiopatologia , 5-Metilcitosina/análogos & derivados , Animais , Citosina/metabolismo , Metilação de DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Epigênese Genética , Formaldeído/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , MicroRNAs/genética , Dor/induzido quimicamente , Dor/patologia , Fosfopiruvato Hidratase/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Medula Espinal/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA