Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 111: 104828, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33895605

RESUMO

Marine natural products derived from special or extreme environment provide an important source for the development of anti-tumor drugs due to their special skeletons and functional groups. In this study, based on our previous work on the total synthesis and structure revision of the novel marine natural product Chrysamide B, a group of its derivatives were designed, synthesized, and subsequently of which the anti-cancer activity, structure-activity relationships and cellular mechanism were explored for the first time. Compared with Chrysamide B, better anti-cancer performance of some derivatives against five human cancer cell lines (SGC-7901, MGC-803, HepG2, HCT-116, MCF-7) was observed, especially for compound b-9 on MGC-803 and SGC-7901 cells with the IC 50 values of 7.88 ± 0.81 and 10.08 ± 1.08 µM, respectively. Subsequently, cellular mechanism study suggested that compound b-9 treatment could inhibit the cellular proliferation, reduce the migration and invasion ability of cells, and induce mitochondrial-dependent apoptosis in gastric cancer MGC-803 and SGC-7901 cells. Furthermore, the mitochondrial-dependent apoptosis induced by compound b-9 is related with the JAK2/STAT3/Bcl-2 signaling pathway. To conclude, our results offer a new structure for the discovery of anti-tumor lead compounds from marine natural products.


Assuntos
Amidas/farmacologia , Antineoplásicos/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Desenho de Fármacos , Amidas/síntese química , Amidas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Compostos Bicíclicos com Pontes/síntese química , Compostos Bicíclicos com Pontes/química , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
2.
Eur J Med Chem ; 211: 113027, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33248852

RESUMO

The combination between two well-studied bioactive compounds melatonin and salicylic acid with proper modifications unexpectedly creates a sharp pair of "scissors" cutting off the vicious connection between inflammation and cancer by targeting a key contributor Signal Transducers and Activators of Transcription 3 (STAT3) in the two pathological processes. A representative compound P-3 with IC50 values on each tested cell line ranging from 7.37 to 18.62 µM among the designed melatonin derivatives is equipped with the ability of curbing inflammation-promoting cancer by down-regulating the expression, activation and nuclear translocation of STAT3, breaking the feedforward loop of STAT3 activation by decreasing the expression of pro-tumorigenic cytokines, and inducing cell apoptosis through ROS triggered Cyto-c/Caspase-3 pathway. This study suggests that the melatonin derivative P-3 is likely to become a promising chemical structure for developing the novel anti-cancer agents taking effect through hindering the mutual-promoting processes between inflammation and cancer.


Assuntos
Antineoplásicos/farmacologia , Inflamação/tratamento farmacológico , Melatonina/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Inflamação/metabolismo , Inflamação/patologia , Melatonina/síntese química , Melatonina/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
3.
Front Pharmacol ; 11: 608218, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33628179

RESUMO

Oxovanadium complexes, particularly vanadyl (IV) derivatives with hybrid ligands of Schiff base and polypyridyl, have been demonstrated to possess great anticancerous therapeutic efficacy. However, most of the studies on the activity of these oxovanadium complexes have mainly focused on in vitro studies, and animal studies in vivo are extremely scarce. Based on the antitumor test results of four novel oxovanadium complexes in our previous work, this work further conducted a comprehensive antitumor activity study in vitro and in vivo on VO(hntdtsc)(NPIP), which owned the strongest inhibitory activity in vitro on multiple tumor cell proliferation. The cellular mechanism study suggested that VO(hntdtsc)(NPIP) inhibited the cell proliferation via arresting the cell cycle at G0/G1 phase through the p16-cyclin D1-CDK4-p-Rb pathway and inducing cell apoptosis through mitochondrial-dependent apoptosis pathway on HeLa cells. Inconsistent with the effects in vitro, VO(hntdtsc)(NPIP) significantly inhibited the growth of tumor and induced the apoptosis of cancer cells in mice xenograft models according to the results of nude mice in vivo image detection, H&E pathological examination, and immunohistochemical detection of p16/Ki-67 protein expression. Collectively, all the results, particularly studies in vivo, demonstrated that VO(hntdtsc)(NPIP) hold a potential to be the lead compound and further to be an anticervical cancer drug.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA