Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 269: 115906, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38176135

RESUMO

Cadmium (Cd) is known as a female reproductive toxicant. Our previous study has shown that Cd can influence the proliferation and cell cycle of granulosa cells and induce apoptosis. MicroRNAs (miRNAs) play an important role in the regulation of Cd-induced granulosa cell damage in chickens. However, the mechanism remains unclear. In this study, we investigated the mechanisms by which microRNA-129-1-3p (miR-129-1-3p) regulates Cd-induced cytotoxicity in chicken granulosa cells. As anticipated, exposure to Cd resulted in the induction of oxidative stress in granulosa cells, accompanied by the downregulation of antioxidant molecules and/or enzymes of Nrf2, Mn-SOD, Cu-Zn SOD and CAT, and the upregulation of Keap1, GST, GSH-Px, GCLM, MDA, hydrogen peroxide and mitochondrial reactive oxygen species (mtROS). Further studies found that Cd exposure causes mitochondrial calcium ions (Ca2+) overload, provoking mitochondrial damage and apoptosis by upregulating IP3R, GRP75, VDAC1, MCU, CALM1, MFF, caspase 3, and caspase 9 gene and/or protein expressions and mitochondrial Ca2+ levels, while downregulating NCX1, NCLX and MFN2 gene and/or protein expressions and mitochondrial membrane potential (MMP). The Ca2+ chelator BAPTA-AM or the MCU inhibitor MCU-i4 significantly rescued Cd-induced mitochondrial dysfunction, thereby attenuating apoptosis. Additionally, a luciferase reported assay and western blot analysis confirmed that miR-129-1-3p directly target MCU. MiR-129-1-3p overexpression almost completely inhibited protein expression of MCU, increased the gene and protein expressions of NCLX and MFN2 downregulated by Cd, and attenuated mitochondrial Ca2+ overload, MMP depression and mitochondria damage induced by Cd. Moreover, the overexpression of miR-129-1-3p led to a reduction in mtROS and cell apoptosis levels, and a suppression of the gene and protein expressions of caspase 3 and caspase 9. As above, these results provided the evidence that IP3R-MCU signaling pathway activated by Cd plays a significant role in inducing mitochondrial Ca2+ overload, mitochondrial damage, and apoptosis. MiR-129-1-3p exerts a protective effect against Cd-induced granulosa cell apoptosis through the direct inhibition of MCU expression in the ovary of laying hens.


Assuntos
Galinhas , MicroRNAs , Animais , Feminino , Galinhas/genética , Galinhas/metabolismo , Cádmio/metabolismo , Caspase 3/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Caspase 9/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Apoptose/genética , Células da Granulosa/metabolismo , Transdução de Sinais
3.
Ecotoxicol Environ Saf ; 214: 112091, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33706141

RESUMO

The occurrence of cadmium (Cd) in feed is a major problem in animal health and production. Studies have confirmed that Cd depresses egg production of laying hens, which is closely related to follicular atresia. This study aimed to assess the toxic impacts of Cd on the ovarian tissue, and to examine the mechanism of Cd-induced granulosa cell proliferation and apoptosis. Results from the nitric oxide (NO) and malondialdehyde (MDA) content, total superoxide dismutase (T-SOD), glutathione peroxide (GSH-Px), total nitric oxide synthase (T-NOS) and adenosine triphosphatase (ATPase) activities, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay, and hematoxylin-eosin (H & E) staining indicated that excess Cd induced oxidative stress, granulosa cell apoptosis and follicular atresia in the layer ovary. Low-dose Cd exposure (1 µM) induced the granulosa cell proliferation, upregulated the mRNA levels of RSK1 and RHEB, activated FoxO3a, AKT, ERK1/2, mTOR and p70S6K1 phosphorylation, and promoted cell cycle progression from phase G1 to S. However, high-dose Cd exposure (15 µM) induced reactive oxygen species (ROS) generation and cell apoptosis, upregulated the mRNA levels of the inflammatory factors, ASK1, JNK, p38 and TAK1, downregulated the expressions of RSK1 and RHEB genes, and inhibited the phosphorylation of ERK1/2, mTOR and p70S6K1 proteins, and the cell cycle progression. Rapamycin pre-treatment completely blocked the phosphorylation of mTOR and p70S6K1 proteins, and the cell cycle progression induced by 1 µM Cd, and accelerated 15 µM Cd-induced cell apoptosis and cell cycle arrest. The microRNA sequencing result showed that 15 µM Cd induced differential expression of microRNA genes, which may regulate AKT, ERK1/2 and mTOR signaling and cell cycle progression by regulating the activity of G proteins and cell cycle-related proteins. Conclusively, these results indicated that Cd can cause the ovarian damage and follicular atresia, and regulate cell cycle, cell proliferation or apoptosis of granulosa cells through MAPK, AKT/FoxO3a and mTOR pathways in laying hens.


Assuntos
Cádmio/toxicidade , Células da Granulosa/efeitos dos fármacos , Animais , Apoptose , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Divisão Celular , Proliferação de Células , Galinhas/metabolismo , Feminino , Atresia Folicular , Células da Granulosa/metabolismo , Marcação In Situ das Extremidades Cortadas , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
4.
J Anim Sci ; 98(2)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31974567

RESUMO

In this study, we identified cadmium (Cd) as a potential endocrine disruptor that impairs laying performance, egg quality, and eggshell deposition and induces oxidative stress and inflammation in the eggshell glands of laying hens. A total of 480 38-wk-old laying hens were randomly assigned into 5 groups that were fed a basal diet (control) or a basal diet supplemented with Cd (provided as CdCl2·2.5 H2O) at 7.5, 15, 30, and 60 mg Cd per kg feed for 9 wk. The results showed that, when compared with the control group, a low dose of dietary Cd (7.5 mg/kg) had positive effects on egg quality by improving albumen height, Haugh unit, yolk color, and shell thickness at the third or ninth week. However, with the increase in the dose and duration of Cd exposure, the laying performance, egg quality, and activities of eggshell gland antioxidant enzymes (catalase [CAT], glutathione peroxide [GSH-Px]), and ATPase (Na+/K+-ATPase, Ca2+-ATPase, and Mg2+-ATPase) deteriorated, and the activity of total nitric oxide synthase (T-NOS) and the level of malondialdehyde (MDA) increased significantly (P < 0.05). The histopathology and real-time quantitative PCR results showed that Cd induced endometrial epithelial cell proliferation accompanied by upregulation of the mRNA levels of progesterone receptor (PgR) and epidermal growth factor receptor (EGFR), downregulation of the mRNA levels of estrogen receptor α (ERα) and interleukin 6 (IL6), and inflammation of the eggshell gland accompanied by significantly increased expression of complement C3 and pro-inflammatory cytokine tumor necrosis factor α (TNFα) (P < 0.05). In addition, the ultrastructure of the eggshell showed that dietary supplementation with 7.5 mg/kg Cd increased the palisade layer and total thickness of the shell, but with the increase in dietary Cd supplementation (30 and 60 mg/kg) the thickness of the palisade layer and mammillary layer decreased significantly (P < 0.05), and the outer surface of the eggshell became rougher. Correspondingly, the expression of calbindin 1 (CALB1), ovocalyxin-32 (OCX-32), ovocalyxin-36 (OCX-36), osteopontin (SPP1), and ovocledidin-17 (OC-17) decreased significantly (P < 0.05) with increasing dietary Cd supplementation. Conclusively, the present study demonstrates that dietary supplementation with Cd negatively affects laying performance, egg quality, and eggshell deposition by disturbing the metabolism of eggshell glands in laying hens but has a positive effect on egg quality at low doses.


Assuntos
Cloreto de Cádmio/toxicidade , Calcificação Fisiológica/efeitos dos fármacos , Galinhas , Casca de Ovo/metabolismo , Ração Animal/análise , Animais , Antioxidantes/farmacologia , Cloreto de Cádmio/administração & dosagem , Dieta/veterinária , Casca de Ovo/química , Feminino
5.
Animals (Basel) ; 9(11)2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31752407

RESUMO

This study was conducted to evaluate the toxic effects of cadmium (Cd) on the kidney function and bone development in laying hens. A total of 480 Hy-line laying hens aged 38 weeks were randomly allocated into five treatments, each of which included six replicates of 16 birds. The concentrations of Cd in the diets of the five groups were 0.47, 7.58, 15.56, 30.55, and 60.67 mg/kg. Results showed that serum calcium (Ca) levels decreased significantly in the 60.67 mg Cd/kg diet group (p < 0.05). The activities of serum alkaline phosphatase (ALP) and bone ALP (BALP) decreased significantly in the 15.56, 30.55 and 60.67 mg Cd/kg diet groups (p < 0.05). The levels of parathyroid hormone (PTH) increased significantly in the 30.55 and 60.67 mg Cd/kg diet groups, and the estradiol (E2), 1,25-(OH)2-D3 and calcitonin (CT) decreased significantly with the increase of dietary Cd supplementation (p < 0.05). Histological results presented enlargements of renal tubules and tubular fibrosis in the kidney and decreased trabecular bone in the tibia. Tartrate-resistant acidic phosphatase (TRAP) staining results of tibia showed that osteoclast was significantly increased at the relatively high dose of dietary Cd (p < 0.05). In addition, the renal function indicators of blood urea nitrogen (BUN), urea acid (UA), and creatinine were significantly increased in Cd supplemented groups compared with the control group (p < 0.05). Low dose Cd exposure induced antioxidant defenses accompanying the increase in activities of catalase (CAT), glutathione peroxidase (GSH-Px), and the levels of glutathione (GSH) in renal tissue. At the same time, with the increased Cd levels, the activities of CAT, GSH-Px decreased significantly, and the level of malondialdehyde (MDA) increased significantly (p < 0.05). The activities of Na+/K+-ATPase and Ca2+/Mg2+-ATPase decreased significantly in the relatively high levels of dietary Cd (p < 0.05). These results suggest that Cd can damage renal function and induce disorders in bone metabolism of laying hens.

6.
Biol Trace Elem Res ; 185(1): 185-196, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29349677

RESUMO

The present study evaluated the effects of mercury chloride (HgCl2) on follicular atresia rate, sex hormone secretion, and ovarian oxidative stress in laying hens. Antioxidant enzyme genes and the nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) signal pathway were further studied to uncover the molecular mechanism. A total of 768 40-week-old Hy-Line Brown laying hens were randomly allocated to four treatments with eight pens per treatment and 24 hens of each pen. The birds were fed with four experimental diets containing graded levels of mercury (Hg) at 0.280, 3.325, 9.415, and 27.240 mg/kg, respectively. Results revealed that a positive relationship occurred between the accumulation of Hg in ovary and follicular atresia rate. Progesterone (P4) level significantly decreased in all Hg-treatment groups (P < 0.05), and follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels were the lowest in the 27.240-mg/kg Hg group. Besides, the activities of catalase (CAT), superoxidative dismutase (SOD), glutathione reductase (GR), and glutathione (GSH) content were significantly decreased in all Hg-treatment groups (P < 0.05). Glutathione peroxidase (GSH-Px) activity significantly decreased, while malondialdehyde (MDA) content sharply increased in the 27.240-mg/kg Hg group (P < 0.05). In addition, there were positive relationships between antioxidant enzyme activities and antioxidant gene expressions or between antioxidant gene expressions and Nrf2 mRNA expression, while negative correlations occurred between Nrf2 and Keap1 at transcription and protein levels. It could be concluded that Hg induced ovarian function disorders and ovarian oxidative stress by means of impairing the Nrf2-Keap1 signal pathway in laying hens.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Cloreto de Mercúrio/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Ovário/efeitos dos fármacos , Ovário/metabolismo , Animais , Catalase/metabolismo , Galinhas , Feminino , Hormônio Foliculoestimulante/metabolismo , Glutationa/metabolismo , Hormônio Luteinizante/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Progesterona/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo
7.
Toxins (Basel) ; 8(11)2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27834912

RESUMO

This study was designed to establish if Curcumin (CM) alleviates Aflatoxin B1 (AFB1)-induced hepatotoxic effects and to determine whether alteration of the expression of cytochrome P450 (CYP450) isozymes is involved in the regulation of these effects in chick liver. One-day-old male broilers (n = 120) were divided into four groups and used in a two by two factorial trial in which the main factors included supplementing AFB1 (< 5 vs. 100 µg/kg) and CM (0 vs. 150 mg/kg) in a corn/soybean-based diet. Administration of AFB1 induced liver injury, significantly decreasing albumin and total protein concentrations and increasing alanine aminotransferase and aspartate aminotransferase activities in serum, and induced hepatic histological lesions at week 2. AFB1 also significantly decreased hepatic glutathione peroxidase, catalase, and glutathione levels, while increasing malondialdehyde, 8-hydroxydeoxyguanosine, and exo-AFB1-8,9-epoxide (AFBO)-DNA concentrations. In addition, the mRNA and/or activity of enzymes responsible for the bioactivation of AFB1 into AFBO-including CYP1A1, CYP1A2, CYP2A6, and CYP3A4-were significantly induced in liver microsomes after 2-week exposure to AFB1. These alterations induced by AFB1 were prevented by CM supplementation. Conclusively, dietary CM protected chicks from AFB1-induced liver injury, potentially through the synergistic actions of increased antioxidant capacities and inhibition of the pivotal CYP450 isozyme-mediated activation of AFB1 to toxic AFBO.


Assuntos
Aflatoxina B1/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Curcumina/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Fígado/efeitos dos fármacos , Animais , Carcinógenos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/patologia , Galinhas , Curcumina/uso terapêutico , Inibidores das Enzimas do Citocromo P-450/uso terapêutico , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Adutos de DNA , Isoenzimas/genética , Isoenzimas/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA