Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Insights Imaging ; 15(1): 119, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755299

RESUMO

OBJECTIVE: The study aimed to investigate the predictive value of dynamic contrast-enhanced ultrasound (DCE-US) in differentiating small-duct (SD) and large-duct (LD) types of intrahepatic cholangiocarcinoma (ICC). METHODS: This study retrospectively enrolled 110 patients with pathologically confirmed ICC lesions who were subject to preoperative contrast-enhanced ultrasound (CEUS) examinations between January 2022 and February 2023. Patients were further classified according to the subtype: SD-type and LD-type, and an optimal predictive model was established and validated using the above pilot cohort. The test cohort, consisting of 48 patients prospectively enrolled from March 2023 to September 2023, was evaluated. RESULTS: In the pilot cohort, compared with SD-type ICCs, more LD-type ICCs showed elevated carcinoembryonic antigen (p < 0.001), carbohydrate antigen 19-9 (p = 0.004), ill-defined margin (p = 0.018), intrahepatic bile duct dilation (p < 0.001). Among DCE-US quantitative parameters, the wash-out area under the curve (WoAUC), wash-in and wash-out area under the curve (WiWoAUC), and fall time (FT) at the margin of lesions were higher in the SD-type group (all p < 0.05). Meanwhile, the mean transit time (mTT) and wash-out rate (WoR) at the margin of the lesion were higher in the LD-type group (p = 0.041 and 0.007, respectively). Logistic regression analysis showed that intrahepatic bile duct dilation, mTT, and WoR were significant predictive factors for predicting ICC subtypes, and the AUC of the predictive model achieved 0.833 in the test cohort. CONCLUSIONS: Preoperative DCE-US has the potential to become a novel complementary method for predicting the pathological subtype of ICC. CRITICAL RELEVANCE STATEMENT: DCE-US has the potential to assess the subtypes of ICC lesions quantitatively and preoperatively, which allows for more accurate and objective differential diagnoses, and more appropriate treatments and follow-up or additional examination strategies for the two subtypes. KEY POINTS: Preoperative determination of intrahepatic cholangiocarcinoma (ICC) subtype aids in surgical decision-making. Quantitative parameters from dynamic contrast-enhanced US (DCE-US) allow for the prediction of the ICC subtype. DCE-US-based imaging has the potential to become a novel complementary method for predicting ICC subtypes.

2.
Biomimetics (Basel) ; 9(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38248602

RESUMO

Steel strip is an important raw material for the engineering, automotive, shipbuilding, and aerospace industries. However, during the production process, the surface of the steel strip is prone to cracks, pitting, and other defects that affect its appearance and performance. It is important to use machine vision technology to detect defects on the surface of a steel strip in order to improve its quality. To address the difficulties in classifying the fine-grained features of strip steel surface images and to improve the defect detection rate, we propose an improved YOLOv5s model called YOLOv5s-FPD (Fine Particle Detection). The SPPF-A (Spatial Pyramid Pooling Fast-Advance) module was constructed to adjust the spatial pyramid structure, and the ASFF (Adaptively Spatial Feature Fusion) and CARAFE (Content-Aware ReAssembly of FEatures) modules were introduced to improve the feature extraction and fusion capabilities of strip images. The CSBL (Convolutional Separable Bottleneck) module was also constructed, and the DCNv2 (Deformable ConvNets v2) module was introduced to improve the model's lightweight properties. The CBAM (Convolutional Block Attention Module) attention module is used to extract key and important information, further improving the model's feature extraction capability. Experimental results on the NEU_DET (NEU surface defect database) dataset show that YOLOv5s-FPD improves the mAP50 accuracy by 2.6% before data enhancement and 1.8% after SSIE (steel strip image enhancement) data enhancement, compared to the YOLOv5s prototype. It also improves the detection accuracy of all six defects in the dataset. Experimental results on the VOC2007 public dataset demonstrate that YOLOv5s-FPD improves the mAP50 accuracy by 4.6% before data enhancement, compared to the YOLOv5s prototype. Overall, these results confirm the validity and usefulness of the proposed model.

3.
Nat Commun ; 15(1): 672, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253555

RESUMO

There are few effective treatments for small cell lung cancer (SCLC) underscoring the need for innovative therapeutic approaches. This study focuses on exploiting telomerase, a critical SCLC dependency as a therapeutic target. A prominent characteristic of SCLC is their reliance on telomerase activity, a key enzyme essential for their continuous proliferation. Here we utilize a nucleoside analog, 6-Thio-2'-deoxyguanosine (6TdG) currently in phase II clinical trials, that is preferentially incorporated by telomerase into telomeres leading to telomere dysfunction. Using preclinical mouse and human derived models we find low intermittent doses of 6TdG inhibit tumor growth and reduce metastatic burden. Anti-tumor efficacy correlates with a reduction in a subpopulation of cancer initiating like cells (CICs) identified by their expression of L1CAM/CD133 and highest telomerase activity. 6TdG treatment also leads to activation of innate and adaptive anti-tumor responses. Mechanistically, 6TdG depletes CICs and induces type-I interferon signaling leading to tumor immune visibility by activating tumor cell STING signaling. We also observe increased sensitivity to irradiation after 6TdG treatment in both syngeneic and humanized SCLC xenograft models both of which are dependent on the presence of host immune cells. This study underscores the immune-enhancing and metastasis-reducing effects of 6TdG, employing a range of complementary in vitro and in vivo SCLC preclinical models providing a potential therapeutic approach to SCLC.


Assuntos
Desoxiguanosina/análogos & derivados , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Telomerase , Tionucleosídeos , Humanos , Animais , Camundongos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Telômero
4.
Cancer Cell ; 41(10): 1731-1748.e8, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37774698

RESUMO

The role of tumor mutational burden (TMB) in shaping tumor immunity is a key question that has not been addressable using genetically engineered mouse models (GEMMs) of lung cancer. To induce TMB in lung GEMMs, we expressed an ultra-mutator variant of DNA polymerase-E (POLE)P286R in lung epithelial cells. Introduction of PoleP286R allele into KrasG12D and KrasG12D; p53L/L (KP) models significantly increase their TMB. Immunogenicity and sensitivity to immune checkpoint blockade (ICB) induced by Pole is partially dependent on p53. Corroborating these observations, survival of NSCLC patients whose tumors have TP53truncating mutations is shorter than those with TP53WT with immunotherapy. Immune resistance is in part through reduced antigen presentation and in part due to mutational heterogeneity. Total STING protein levels are elevated in Pole mutated KP tumors creating a vulnerability. A stable polyvalent STING agonist or p53 induction increases sensitivity to immunotherapy offering therapeutic options in these polyclonal tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína Supressora de Tumor p53/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Mutação
5.
J Thorac Oncol ; 16(4): 583-600, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33388477

RESUMO

INTRODUCTION: Lung adenocarcinomas harboring EGFR mutations do not respond to immune checkpoint blockade therapy and their EGFR wildtype counterpart. The mechanisms underlying this lack of clinical response have been investigated but remain incompletely understood. METHODS: We analyzed three cohorts of resected lung adenocarcinomas (Profiling of Resistance Patterns of Oncogenic Signaling Pathways in Evaluation of Cancer of Thorax, Immune Genomic Profiling of NSCLC, and The Cancer Genome Atlas) and compared tumor immune microenvironment of EGFR-mutant tumors to EGFR wildtype tumors, to identify actionable regulators to target and potentially enhance the treatment response. RESULTS: EGFR-mutant NSCLC exhibited low programmed death-ligand 1, low tumor mutational burden, decreased number of cytotoxic T cells, and low T cell receptor clonality, consistent with an immune-inert phenotype, though T cell expansion ex vivo was preserved. In an analysis of 75 immune checkpoint genes, the top up-regulated genes in the EGFR-mutant tumors (NT5E and ADORA1) belonged to the CD73/adenosine pathway. Single-cell analysis revealed that the tumor cell population expressed CD73, both in the treatment-naive and resistant tumors. Using coculture systems with EGFR-mutant NSCLC cells, T regulatory cell proportion was decreased with CD73 knockdown. In an immune-competent mouse model of EGFR-mutant lung cancer, the CD73/adenosine pathway was markedly up-regulated and CD73 blockade significantly inhibited tumor growth. CONCLUSIONS: Our work revealed that EGFR-mutant NSCLC has an immune-inert phenotype. We identified the CD73/adenosine pathway as a potential therapeutic target for EGFR-mutant NSCLC.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Adenosina , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Mutação , Microambiente Tumoral
6.
Cancer Res ; 81(7): 1813-1826, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33495232

RESUMO

Small cell lung cancer (SCLC) is a pulmonary neuroendocrine cancer with very poor prognosis and limited effective therapeutic options. Most patients are diagnosed at advanced stages, and the exact reason for the aggressive and metastatic phenotype of SCLC is completely unknown. Despite a high tumor mutational burden, responses to immune checkpoint blockade are minimal in patients with SCLC. This may reflect defects in immune surveillance. Here we illustrate that evading natural killer (NK) surveillance contributes to SCLC aggressiveness and metastasis, primarily through loss of NK-cell recognition of these tumors by reduction of NK-activating ligands (NKG2DL). SCLC primary tumors expressed very low level of NKG2DL mRNA and SCLC lines express little to no surface NKG2DL at the protein level. Chromatin immunoprecipitation sequencing showed NKG2DL loci in SCLC are inaccessible compared with NSCLC, with few H3K27Ac signals. Restoring NKG2DL in preclinical models suppressed tumor growth and metastasis in an NK cell-dependent manner. Likewise, histone deacetylase inhibitor treatment induced NKG2DL expression and led to tumor suppression by inducing infiltration and activation of NK and T cells. Among all the common tumor types, SCLC and neuroblastoma were the lowest NKG2DL-expressing tumors, highlighting a lineage dependency of this phenotype. In conclusion, these data show that epigenetic silencing of NKG2DL results in a lack of stimulatory signals to engage and activate NK cells, highlighting the underlying immune avoidance of SCLC and neuroblastoma. SIGNIFICANCE: This study discovers in SCLC and neuroblastoma impairment of an inherent mechanism of recognition of tumor cells by innate immunity and proposes that this mechanism can be reactivated to promote immune surveillance.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Evasão Tumoral/fisiologia , Animais , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Células HEK293 , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Nus , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Metástase Neoplásica , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/imunologia , Carcinoma de Pequenas Células do Pulmão/patologia , Evasão Tumoral/genética
7.
Database (Oxford) ; 20202020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33181824

RESUMO

Accumulating evidences have shown that the deregulation of circRNA has close association with many human cancers. However, these experimental verified circRNA-cancer associations are not collected in any database. Here, we develop a manually curated database (circR2Cancer) that provides experimentally supported associations between circRNAs and cancers. The current version of the circR2Cancer contains 1439 associations between 1135 circRNAs and 82 cancers by extracting data from existing literatures and databases. In addition, circR2Cancer contains the information of cancer exacted from Disease Ontology and basic biological information of circRNAs from circBase. At the same time, circR2Cancer provides a simple and friendly interface for users to conveniently browse, search and download the data. It will be a useful and valuable resource for researchers to understanding the regulation mechanism of circRNA in cancers. DATABASE URL: http://www.biobdlab.cn:8000.


Assuntos
Neoplasias , RNA Circular , Bases de Dados Factuais , Humanos , Neoplasias/genética
8.
J Agric Food Chem ; 68(44): 12413-12420, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33104344

RESUMO

Fungicides are commonly used to prevent and treat grape (Vitis vinifera L.) diseases; however, they are potentially toxic to humans. Herein, we show that the application of S-adenosyl-l-methionine (SAM) accelerated the metabolism of various fungicides in Cabernet Sauvignon berries. The substances and enzymes involved in the metabolism of fungicides were analyzed to elucidate the effects of SAM. Results showed that SAM improved the production rate of superoxide anion, the hydrogen peroxide content, and the activities of superoxide dismutase, catalase, and peroxidase in azoxystrobin-treated berries. Additionally, SAM had a positive effect on the content of reduced glutathione and on the activities of glutathione S-transferase, glutathione reductase, and glutathione peroxidase. Importantly, the stimulatory effect of SAM on fungicide metabolism was also observed for metalaxyl and thiophanate-methyl. These results suggest that SAM can be used to improve food safety.


Assuntos
Fungicidas Industriais/metabolismo , S-Adenosilmetionina/metabolismo , Vitis/metabolismo , Catalase/metabolismo , Frutas/enzimologia , Frutas/metabolismo , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Proteínas de Plantas/metabolismo , Superóxido Dismutase/metabolismo , Vitis/enzimologia
9.
Adv Sci (Weinh) ; 7(14): 2000098, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32714746

RESUMO

The Rho family GTPases are crucial drivers of tumor growth and metastasis. However, it is difficult to develop GTPases inhibitors due to a lack of well-characterized binding pockets for compounds. Here, through molecular dynamics simulation of the RhoA protein, a groove around cysteine 107 (Cys107) that is relatively well-conserved within the Rho family is discovered. Using a combined strategy, the novel inhibitor DC-Rhoin is discovered, which disrupts interaction of Rho proteins with guanine nucleotide exchange factors (GEFs) and guanine nucleotide dissociation inhibitors (GDIs). Crystallographic studies reveal that the covalent binding of DC-Rhoin to the Cys107 residue stabilizes and captures a novel allosteric pocket. Moreover, the derivative compound DC-Rhoin04 inhibits the migration and invasion of cancer cells, through targeting this allosteric pocket of RhoA. The study reveals a novel allosteric regulatory site within the Rho family, which can be exploited for anti-metastasis drug development, and also provides a novel strategy for inhibitor discovery toward "undruggable" protein targets.

10.
J Biol Chem ; 295(32): 11144-11160, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32540968

RESUMO

Defective DNA damage response (DDR) signaling is a common mechanism that initiates and maintains the cellular senescence phenotype. Dysfunctional telomeres activate DDR signaling, genomic instability, and cellular senescence, but the links among these events remains unclear. Here, using an array of biochemical and imaging techniques, including a highly regulatable CRISPR/Cas9 strategy to induce DNA double strand breaks specifically in the telomeres, ChIP, telomere immunofluorescence, fluorescence in situ hybridization (FISH), micronuclei imaging, and the telomere shortest length assay (TeSLA), we show that chromosome mis-segregation due to imperfect DDR signaling in response to dysfunctional telomeres creates a preponderance of chromatin fragments in the cytosol, which leads to a premature senescence phenotype. We found that this phenomenon is caused not by telomere shortening, but by cyclic GMP-AMP synthase (cGAS) recognizing cytosolic chromatin fragments and then activating the stimulator of interferon genes (STING) cytosolic DNA-sensing pathway and downstream interferon signaling. Significantly, genetic and pharmacological manipulation of cGAS not only attenuated immune signaling, but also prevented premature cellular senescence in response to dysfunctional telomeres. The findings of our study uncover a cellular intrinsic mechanism involving the cGAS-mediated cytosolic self-DNA-sensing pathway that initiates premature senescence independently of telomere shortening.


Assuntos
Senescência Celular/genética , Ligases/metabolismo , Nucleotídeos Cíclicos/metabolismo , Telômero , Ciclo Celular , Quebras de DNA de Cadeia Dupla , Humanos , Transdução de Sinais
11.
J Proteomics ; 210: 103545, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31626998

RESUMO

Targeting specific ubiquitin E3 ligase for degradation of disease-driven protein has recently been an important concept for cancer therapy, as exemplified by the case of thalidomide for the treatment of multiple myeloma. E7070, an aryl sulfonamide drug, exhibited anticancer activity by targeting the E3 ligase receptor DCAF15, with RBM39 as the only known substrate. Exploration of additional substrates of E7070 would facilitate elucidation of its mechanism of actions. To this end, we used a strategy combing pSILAC method with two complementary digestion approaches (LysC-Trypsin and LysN-LysArgiNase) to accurately monitor the protein turnover and increase the depth of proteome profiling. Systematically, we showed that E7070 treatment changed turnover rates of 868 proteins (1.5 fold change and p-value <.05). Several proteins displayed accelerated turnover indicating they were potential new substrates of E7070, among which, pre-mRNA splicing factor 39 (PRPF39) had been reported to be overexpressed in certain cancers. We further demonstrated that PRPF39 was ubiquitinated and degraded by E7070 in a DCAF15-dependent manner, and represented a new bona fide substrate of E7070. The degradation of PRPF39 might also be contributed to the anticancer activity of E7070. SIGNIFICANCE: Identification of degraded substrates is difficult because protein abundance is a comprehensive result regulated by protein production and degradation at the same time. Pulsed SILAC (pSILAC), a method to measure protein turnover, would provide higher sensitivity than total protein quantification. In addition, some peptide sequences are not amenable to MS analysis after LysC-Trypsin digestion. LysN-LysargiNase, as a mirror protease combination of LysC-Trypsin, can be complementary for peptide identification with LysC-Trypsin. By combining pSILAC with two complementary digestion approaches (LysC-Trypsin and LysN-LysArgiNase), we systematically investigated E7070-dependent protein degradation. As a result, we found several potential degradation substrates of E7070 including PRPF39. Further, by exploiting a series of biological assays, we demonstrated that E7070 can lead to the ubiquitination and proteasomal degradation of PRPF39 by promoting the recruitment of PRPF39 to the CUL4-DCAF15 E3 ubiquitin ligase.


Assuntos
Neoplasias do Colo/patologia , Enzimas Reparadoras do DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteólise , Proteômica/métodos , Fatores de Processamento de RNA/metabolismo , Sulfonamidas/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Humanos , Espectrometria de Massas/métodos , Ubiquitina/química , Ubiquitina/metabolismo
12.
J Med Chem ; 62(16): 7473-7488, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31335138

RESUMO

Alterations of fibroblast growth factor receptors (FGFRs) play key roles in numerous cancer progression and development, which makes FGFRs attractive targets in the cancer therapy. In the present study, based on a newly devised FGFR target-specific scoring function, a novel FGFR inhibitor hit was identified through virtual screening. Hit-to-lead optimization was then performed by integrating molecular docking and site-of-metabolism predictions with an array of in vitro evaluations and X-ray cocrystal structure determination, leading to a covalent FGFR inhibitor 15, which showed a highly selective and potent FGFR inhibition profile. Pharmacokinetic assessment, protein kinase profiling, and hERG inhibition evaluation were also conducted, and they confirmed the value of 15 as a lead for further investigation. Overall, this study exemplifies the importance of the integrative use of computational methods and experimental techniques in drug discovery.


Assuntos
Desenho de Fármacos , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Sequência de Aminoácidos , Humanos , Cinética , Simulação de Acoplamento Molecular , Estrutura Molecular , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Fosforilação/efeitos dos fármacos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
13.
J Immunother Cancer ; 7(1): 32, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728077

RESUMO

BACKGROUND: Tumor orchestrated metabolic changes in the microenvironment limit generation of anti-tumor immune responses. Availability of arginine, a semi-essential amino acid, is critical for lymphocyte proliferation and function. Levels of arginine are regulated by the enzymes arginase 1,2 and nitric oxide synthase (NOS). However, the role of arginase activity in lung tumor maintenance has not been investigated in clinically relevant orthotopic tumor models. METHODS: RNA sequencing (RNA-seq) of sorted cell populations from mouse lung adenocarcinomas derived from immunocompetent genetically engineered mouse models (GEMM)s was performed. To complement mouse studies, a patient tissue microarray consisting of 150 lung adenocarcinomas, 103 squamous tumors, and 54 matched normal tissue were stained for arginase, CD3, and CD66b by multiplex immunohistochemistry. Efficacy of a novel arginase inhibitor compound 9 in reversing arginase mediated T cell suppression was determined in splenocyte ex vivo assays. Additionally, the anti-tumor activity of this compound was determined in vitro and in an autochthonous immunocompetent KrasG12D GEMM of lung adenocarcinoma model. RESULTS: Analysis of RNA-seq of sorted myeloid cells suggested that arginase expression is elevated in myeloid cells in the tumor as compared to the normal lung tissue. Accordingly, in the patient samples arginase 1 expression was mainly localized in the granulocytic myeloid cells and significantly elevated in both lung adenocarcinoma and squamous tumors as compared to the controls. Our ex vivo analysis demonstrated that myeloid derived suppressor cell (MDSC)s cause T cell suppression by arginine depletion, and suppression of arginase activity by a novel ARG1/2 inhibitor, compound 9, led to restoration of T cell function by increasing arginine. Treatment of KrasG12D GEMM of lung cancer model with compound 9 led to a significant tumor regression associated with increased T cell numbers and function, while it had no activity across several murine and human non-small cell (NSCLC) lung cancer lines in vitro. CONCLUSIONS: We show that arginase expression is elevated in mouse and patient lung tumors. In a KRASG12D GEMM arginase inhibition diminished growth of established tumors. Our data suggest arginase as an immunomodulatory target that should further be investigated in lung tumors with high arginase activity.


Assuntos
Arginase/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Neoplasias Pulmonares/enzimologia , Células Mieloides/enzimologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Arginase/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Camundongos , Pessoa de Meia-Idade , RNA-Seq
14.
Cell Rep ; 24(13): 3477-3487.e6, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30257209

RESUMO

Nuclear protein in testis (Nut) is a universal oncogenic driver in the highly aggressive NUT midline carcinoma, whose physiological function in male germ cells has been unclear. Here we show that expression of Nut is normally restricted to post-meiotic spermatogenic cells, where its presence triggers p300-dependent genome-wide histone H4 hyperacetylation, which is essential for the completion of histone-to-protamine exchange. Accordingly, the inactivation of Nut induces male sterility with spermatogenesis arrest at the histone-removal stage. Nut uses p300 and/or CBP to enhance acetylation of H4 at both K5 and K8, providing binding sites for the first bromodomain of Brdt, the testis-specific member of the BET family, which subsequently mediates genome-wide histone removal. Altogether, our data reveal the detailed molecular basis of the global histone hyperacetylation wave, which occurs before the final compaction of the male genome.


Assuntos
Histonas/metabolismo , Infertilidade Masculina/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Espermatozoides/metabolismo , Acetilação , Animais , Código das Histonas , Histonas/química , Masculino , Camundongos , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Ligação Proteica , Espermatogênese , Xenopus , Fatores de Transcrição de p300-CBP/metabolismo
16.
J Cell Biol ; 216(2): 409-424, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28122957

RESUMO

Glycolytic enzymes are known to play pivotal roles in cancer cell survival, yet their molecular mechanisms remain poorly understood. Phosphoglycerate mutase 1 (PGAM1) is an important glycolytic enzyme that coordinates glycolysis, pentose phosphate pathway, and serine biosynthesis in cancer cells. Herein, we report that PGAM1 is required for homologous recombination (HR) repair of DNA double-strand breaks (DSBs) caused by DNA-damaging agents. Mechanistically, PGAM1 facilitates DSB end resection by regulating the stability of CTBP-interacting protein (CtIP). Knockdown of PGAM1 in cancer cells accelerates CtIP degradation through deprivation of the intracellular deoxyribonucleotide triphosphate pool and associated activation of the p53/p73 pathway. Enzymatic inhibition of PGAM1 decreases CtIP protein levels, impairs HR repair, and hence sensitizes BRCA1/2-proficient breast cancer to poly(ADP-ribose) polymerase (PARP) inhibitors. Together, this study identifies a metabolically dependent function of PGAM1 in promoting HR repair and reveals a potential therapeutic opportunity for PGAM1 inhibitors in combination with PARP inhibitors.


Assuntos
Quebras de DNA de Cadeia Dupla , Desoxirribonucleotídeos/metabolismo , Neoplasias/enzimologia , Fosfoglicerato Mutase/metabolismo , Reparo de DNA por Recombinação , Células A549 , Animais , Apoptose , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Proteínas de Transporte/metabolismo , Ciclo Celular , Proliferação de Células , Sobrevivência Celular , Relação Dose-Resposta a Droga , Endodesoxirribonucleases , Feminino , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Espectrometria de Massas , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Proteínas Nucleares/metabolismo , Fosfoglicerato Mutase/antagonistas & inibidores , Fosfoglicerato Mutase/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Estabilidade Proteica , Proteômica/métodos , Interferência de RNA , Fatores de Tempo , Transfecção , Carga Tumoral , Proteína Tumoral p73/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA