Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Acta Trop ; 250: 107083, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070722

RESUMO

BACKGROUND: Alveolar echinococcosis (AE) can cause severe liver injury and be fatal if left untreated. Currently, there are no effective therapeutic options for AE-induced liver injury. Therefore, by exploring the changes of gene proteins in mice with damaged liver, we attempted to identify the key molecules of liver damage, and provide data that will enable the development of drugs targeting hepatic AE. METHODS: BALB/c mice were inoculated with protoscoleces via the hepatic portal vein. Three months later, B-ultrasound examination and Hematoxylin-eosin (H&E) staining were used to confirm liver damage in mice. RNA sequencing and Liquid chromatography-mass spectrometry (LC-MS) were used to screen differentially expressed molecules associated with liver damage through bioinformatics, and Quantitative Real-Time PCR (qRT-PCR) was used to verify their expression. RESULTS: B-ultrasound examination showed liver lesions in the infected group, and H&E staining showed liver inflammation, fibrosis and liver necrosis. RNA sequencing and LC-MS results showed changes in the levels of more than 1000 genes and proteins, with upregulation of immune and inflammation pathways. By contrast, the downregulated genes and proteins were mostly involved in various metabolic reactions. Correlation analysis was conducted between the transcriptome data and proteome data. The results revealed 240 differentially expressed genes, of which 192 were upregulated, and 48 were downregulated. Many of these genes were involved in metabolic reactions, such as Catalase (Cat), fatty acid synthase (Fasn), and IL-16 genes, which may have relevance to liver injury. The results of qRT-PCR were consistent with those of bioinformatics analysis. CONCLUSIONS: The mechanisms of liver injury in mice infected with Echinococcus multilocularis are complex, involving abnormal metabolism, oxidative stress, inflammatory response, and many other factors. This study provides the data for preliminary exploration for the development of targeted therapies against AE.


Assuntos
Equinococose , Echinococcus multilocularis , Hepatopatias , Camundongos , Animais , Fígado , Echinococcus multilocularis/genética , Inflamação , Transcriptoma
2.
Immun Inflamm Dis ; 11(11): e1082, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38018604

RESUMO

OBJECTIVE: Cystic echinococcosis (CE), a zoonotic parasitic disease caused by Echinococcus granulosus, remains a public health and socioeconomic issue worldwide, making its prevention and treatment of vital importance. The aim of this study was to investigate changes in the intestinal microbiota of mice immunized with three peptide vaccines based on the recombinant antigen of E. granulosus, P29 (rEg.P29), with the hope of providing more valuable information for the development of vaccines against CE. METHODS: Three peptide vaccines, rEg.P29T , rEg.P29B , and rEg.P29T + B , were prepared based on rEg.P29, and a subcutaneous immunization model was established. The intestinal floras of mice in the different immunization groups were analyzed by 16 S rRNA gene sequencing. RESULTS: The intestinal microbiota analysis at both immunization time points revealed that Firmicutes, Bacteroidota, and Verrucomicrobiota were the predominant flora at the phylum level, while at the genus level, Akkermansia, unclassified_Muribaculaceae, Lachnospiraceae_NK4A136_group, and uncultured_rumen bacterium were the dominant genera. Some probiotics in the intestines of mice were significantly increased after immunization with the peptide vaccines, such as Lactobacillus_taiwanensis, Lactobacillus_reuteri, Lachnospiraceae_NK4A136_group, Bacteroides_acidifaciens, and so forth. Meanwhile, some harmful or conditionally pathogenic bacteria were decreased, such as Turicibacter sanguinis, Desulfovibrio_fairfieldensis, Clostridium_sp, and so forth, most of which are associated with inflammatory or infectious diseases. Kyoto Encyclopaedia of Genes and Genomes enrichment analysis revealed that the differential flora were enriched in multiple metabolic pathways, primarily biological systems, human diseases, metabolism, cellular processes, and environmental information processing. CONCLUSION: In this study, we comprehensively analyzed and compared changes in the intestinal microbiota of mice immunized with three peptide vaccines as well as their related metabolic pathways, providing a theoretical background for the development of novel vaccines against E. granulosus.


Assuntos
Equinococose , Echinococcus granulosus , Microbioma Gastrointestinal , Animais , Humanos , Camundongos , Microbioma Gastrointestinal/genética , Epitopos , Echinococcus granulosus/genética , Zoonoses , Proteínas Recombinantes , Vacinas de Subunidades Antigênicas , Peptídeos
3.
Artigo em Inglês | MEDLINE | ID: mdl-37612858

RESUMO

OBJECTIVE: To explore the mechanism of Maiwei Dihuang decoction in the treatment of non-small cell lung cancer (NSCLC) by using network pharmacology and LC-MS technology. METHODS: The effective components in Maiwei Dihuang decoction were detected by liquid chromatography-mass spectrometry (LC-MS). Use the SuperPred database to collect the relevant targets of the active ingredients of Mai Wei Di Tang, and then collect the relevant targets of non-small cell lung cancer from GeneCards, DisgenNET and OMIM databases. On this basis, PPI network construction, GO enrichment analysis and KEGG pathway annotation analysis were carried out for target sites. Finally, AutoDock Vina is used for molecular docking. RESULTS: We further screened 16 effective Chinese herbal compounds through LC-MS combined with ADME level. On this basis, we obtained 77 core targets through protein interaction network analysis. Through GO, KEGG analysis and molecular docking results, we finally screened out the potential targets of Maiwei Dihuang Decoction for NSCLC: TP53, STAT3, MAPK3. CONCLUSION: Maiwei Dihuang decoction may play a role in the treatment of NSCLC by co-regulating TP53/STAT3/MAPK3 signal pathway.

4.
Laryngoscope ; 133(11): 2920-2928, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37010343

RESUMO

OBJECTIVES: Our study aimed to investigate the feasibility of using high-density surface electromyography (HD-sEMG) for swallowing assessment by comparing the quantitative parameters and topographic patterns of HD-sEMG between post-irradiated patients and healthy individuals. METHODS: Ten healthy volunteers and ten post-irradiated nasopharyngeal carcinoma patients were recruited. 96-channel HD-sEMG was recorded although each participant consumed different consistencies of food (thin and thick liquid, puree, congee, and soft rice). Dynamic topography was generated from the root mean square (RMS) of the HD-sEMG signals to illustrate the anterior neck muscle function in the swallowing process. The averaged power of muscles and the symmetry of swallowing patterns were assessed by objective parameters including average RMS, Left/Right Energy Ratio, and Left/Right Energy Difference. RESULTS: The study showed different swallowing patterns between patients with dysphagia and healthy individuals. The mean RMS values were higher in the patient group compared to the healthy group, but the difference was not statistically significant. Asymmetrical patterns were shown in patients with dysphagia. CONCLUSION: HD-sEMG is a promising technique that could be used to quantitatively evaluate the average power of neck muscles and the symmetry of swallowing activities in patients with swallowing difficulties. LEVEL OF EVIDENCE: Level 3 Laryngoscope, 133:2920-2928, 2023.


Assuntos
Transtornos de Deglutição , Humanos , Eletromiografia/métodos , Transtornos de Deglutição/diagnóstico , Transtornos de Deglutição/etiologia , Deglutição/fisiologia , Músculos do Pescoço , Contração Muscular
5.
FASEB J ; 37(4): e22819, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36848174

RESUMO

Echinococcus granulosus is one of the main causes of economic loss in the livestock industry because of its food-borne transmission. Cutting off the transmission route is a valid prevention method, and vaccines are the most effective means of controlling and eliminating infectious diseases. However, no human-related vaccine has been yet marketed. As a genetic engineering vaccine, recombinant protein P29 of E. granulosus (rEg.P29) could provide protection against deadly challenges. In this study, we generated peptide vaccines (rEg.P29T , rEg.P29B , and rEg.P29T+B ) based on rEg.P29 and an immunized model was established by subcutaneous immunization. Further evaluation showed that peptide vaccine immunization in mice induced T helper type 1 (Th1)-mediated cellular immune responses, leading to high levels of rEg.P29 or rEg.P29B -specific antibodies. In addition, rEg.P29T+B immunization can induce a higher antibody and cytokine production level than single-epitope vaccines, and immune memory is also longer. Collectively, these results suggest that rEg.P29T+B has the potential to be developed as an efficient subunit vaccine for use in areas where E. granulosus is endemic.


Assuntos
Antígenos de Grupos Sanguíneos , Echinococcus granulosus , Animais , Camundongos , Vacinas de Subunidades Antigênicas , Vacinação , Epitopos , Peptídeos
6.
Front Immunol ; 14: 1243204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38187382

RESUMO

Echinococcosis is a common human and animal parasitic disease that seriously endangers human health and animal husbandry. Although studies have been conducted on vaccines for echinococcosis, to date, there is no human vaccine available for use. One of the main reasons for this is the lack of in-depth research on basic immunization with vaccines. Our previous results confirmed that recombinant antigen P29 (rEg.P29) induced more than 90% immune protection in both mice and sheep, but data on its induction of sheep-associated cellular immune responses are lacking. In this study, we investigated the changes in CD4+ T cells, CD8+ T cells, and antigen-specific cytokines IFN-γ, IL-4, and IL-17A after rEg.P29 immunization using enzyme-linked immunospot assay (ELISPOT), enzyme-linked immunosorbent assay (ELISA), and flow cytometry to investigate the cellular immune response induced by rEg.P29 in sheep. It was found that rEg.P29 immunization did not affect the percentage of CD4+ and CD8+ T cells in peripheral blood mononuclear cells (PBMCs), and was able to stimulate the proliferation of CD4+ and CD8+ T cells after immunization in vitro. Importantly, the results of both ELISPOT and ELISA showed that rEg.P29 can induce the production of the specific cytokines IFN-γ and IL-17A, and flow cytometry verified that rEg.P29 can induce the expression of IFN-γ in CD4+ and CD8+ T cells and IL-17A in CD4+ T cells; however, no IL-4 expression was observed. These results indicate that rEg.P29 can induce Th1, Th17, and Tc1 cellular immune responses in sheep against echinococcosis infection, providing theoretical support for the translation of rEg.P29 vaccine applications.


Assuntos
Equinococose , Echinococcus granulosus , Vacinas , Humanos , Animais , Camundongos , Ovinos , Interleucina-17 , Linfócitos T CD8-Positivos , Leucócitos Mononucleares , Células Th17 , Mieloblastina , Equinococose/prevenção & controle , Citocinas , ELISPOT , Imunidade
7.
Acta Parasitol ; 67(4): 1594-1602, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36048399

RESUMO

OBJECTIVE: Cystic echinococcosis is a kind of parasitic disease that seriously endangers human and animal health. At present, its prevention and treatment still do not achieve the desired results. The aims of this study were to explore the effect of CE on intestinal microflora in mice. METHODS: In this study, 16S rRNA metagenome sequencing and bioinformatics were used to analyze the intestinal flora of mice infected with E. granulosus s.l. Changes in intestinal microbial community abundance were investigated and the differences in microbial populations of mice infected with E. granulosus s.l. were screened. RESULTS: Our results show that at the phylum level, nine abundant taxa were identified, the relative abundance of Firmicutes and Proteobacteria were enriched in infected mice, whereas Bacteroidetes and Patescibacteria were enriched in control mice (P < 0.01). At the class level, 13 abundant taxa were identified, the relative abundance of Bacilli was enriched in control mice, but decreased in infected mice (P < 0.01). At the order level, 15 abundant taxa were identified, the relative abundance of Lactobacillales was enriched in control mice, but decreased in infected mice (P < 0.01). At the family level, 28 abundant taxa were identified, enriched bacteria in the infected mice was Streptococcaceae, while the enriched bacteria in the control group was Lactobacillaceae (P < 0.01). At the genus level, 79 abundant taxa were identified, enriched bacteria in the infected mice was Streptococcus, while the enriched bacteria in the control group was uncultured_bacterium_f_Eggerthellaceae (P < 0.01). At the species level, 80 abundant taxa were identified, enriched bacteria in the infected mice was uncultured_bacterium_g_Streptococcus, while the enriched bacteria in the control group was uncultured_bacterium_f_Eggerthellaceae (P < 0.01). 39 KEGG pathways were identified that were differentially enriched between the infected and control mice. CONCLUSION: This study comprehensively demonstrates the differential intestinal microbiota of infected mice and analyzes the metabolic pathways related to the specific microbiota. This could provide new targets and research direction for the treatment and prevention of diseases caused by E. granulosus s.l.


Assuntos
Equinococose , Echinococcus granulosus , Microbioma Gastrointestinal , Microbiota , Animais , Humanos , Camundongos , Echinococcus granulosus/genética , RNA Ribossômico 16S/genética , Equinococose/parasitologia , Genótipo
8.
Front Pharmacol ; 13: 890444, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35899118

RESUMO

Diabetes-induced cognitive impairment (DCI) presents a major public health risk among the aging population. Previous clinical attempts on known therapeutic targets for DCI, such as depleted insulin secretion, insulin resistance, and hyperglycaemia have delivered poor patient outcomes. However, recent evidence has demonstrated that the gut microbiome plays an important role in DCI by modulating cognitive function through the gut-brain crosstalk. The bioactive compound tanshinone IIA (TAN) has shown to improve cognitive and memory function in diabetes mellitus models, though the pharmacological actions are not fully understood. This study aims to investigate the effect and underlying mechanism of TAN in attenuating DCI in relation to regulating the gut microbiome. Metagenomic sequencing analyses were performed on a group of control rats, rats with diabetes induced by a high-fat/high-glucose diet (HFD) and streptozotocin (STZ) (model group) and TAN-treated diabetic rats (TAN group). Cognitive and memory function were assessed by the Morris water maze test, histopathological assessment of brain tissues, and immunoblotting of neurological biomarkers. The fasting blood glucose (FBG) level was monitored throughout the experiments. The levels of serum lipopolysaccharide (LPS) and tumor necrosis factor-α (TNF-α) were measured by enzyme-linked immunoassays to reflect the circulatory inflammation level. The morphology of the colon barrier was observed by histopathological staining. Our study confirmed that TAN reduced the FBG level and improved the cognitive and memory function against HFD- and STZ-induced diabetes. TAN protected the endothelial tight junction in the hippocampus and colon, regulated neuronal biomarkers, and lowered the serum levels of LPS and TNF-α. TAN corrected the reduced abundance of Bacteroidetes in diabetic rats. At the species level, TAN regulated the abundance of B. dorei, Lachnoclostridium sp. YL32 and Clostridiodes difficile. TAN modulated the lipid metabolism and biosynthesis of fatty acids in related pathways as the main functional components. TAN significantly restored the reduced levels of isobutyric acid and butyric acid. Our results supported the use of TAN as a promising therapeutic agent for DCI, in which the underlying mechanism may be associated with gut microbiome regulation.

9.
Acta Biochim Biophys Sin (Shanghai) ; 54(4): 482-493, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35607954

RESUMO

Echinococcus granulosus causes echinococcosis, an important zoonotic disease worldwide and a major public health issue. Vaccination is an economical and practical approach for controlling E. granulosus. We have previously revealed that a recombinant protein P29 (rEg.P29) is a good vaccine candidate against E. granulosus. However, T cell immunogenic epitopes have not been identified. In the present study, we use rEg.P29-immunized mice as models to screen immunogenic epitopes for the construction of a novel multi-epitope vaccine. We search for immunodominant epitopes from an overlapping peptide library to screen the peptides of rEg.P29. Our results confirm that rEg.P29 immunization in mice elicits the activation of T cells and induces cellular immune responses. Further analyses show that a T cell epitope within amino acids 86­100 of rEg.P29 elicits significant antigen-specific IFN-γ production in CD4+ and CD8+ T cells and promotes specific T-cell activation and proliferation. Collectively, these results provide a reference for the construction of a novel vaccine against broad E. granulosus genotypes based on epitopes of rEg.P29.


Assuntos
Equinococose , Epitopos de Linfócito T , Animais , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Epitopos de Linfócito T/genética , Camundongos , Proteínas Recombinantes/genética , Zoonoses
10.
Oxid Med Cell Longev ; 2022: 6277760, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432723

RESUMO

Objective: This study assessed the anti-arthritic effect and protection of Gedunin (GDN) on joint tissues and revealed the possible mechanism in suppressing rheumatoid arthritis (RA). Methods: LPS-induced macrophages and TNF-α-stimulated synovial fibroblasts (MH7A) or IL-1ß-stimulated primary rheumatoid arthritis synovial fibroblasts (RASFs) were used to evaluate the antiinflammatory effect of GDN. In addition, CIA-induced arthritis was employed here to evaluate the anti-arthritic effect. MTT and BRDU assays were utilized to evaluate the cell viability and proliferation, Q-PCR was conducted to detect the mRNA expression of cytokines, FACS was adopted to monitor ROS production, while western blotting (WB) and siRNA interference were applied in confirming the anti-arthritic effects of GDN via the Nrf2 signaling. Results. In vitro, cell viability was inhibited in macrophages and MH7A cells, but not in RASFs; but the proliferation of RASFs was significantly suppressed in time- and dose-dependent manners. GDN suppressed cytokine levels in LPS-stimulated macrophages and TNF-α-stimulated MH7A cells or RASFs. GDN suppressed ROS expression. Furthermore, GDN treatment notably dose-dependently decreased the mRNA and protein expression of iNOS in LPS-induced macrophages. sip62 interference results showed that GDN cause the less expression of HO-1 and Keap1 and also fail to inhibit cytokines after sip62 interference. In vivo, GDN effectively inhibited paw swelling, arthritis score, and arthritis incidence and cytokines. Conclusions: Our study suggested that GDN exhibited strong antagonistic effect on arthritis both in vitro and in vivo via activation of Nrf2 signaling. Our work will provide a promising therapeutic strategy for RA.


Assuntos
Artrite Reumatoide , Fator 2 Relacionado a NF-E2 , Artrite Reumatoide/tratamento farmacológico , Citocinas/metabolismo , Fibroblastos/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Limoninas , Lipopolissacarídeos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Membrana Sinovial/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Contrast Media Mol Imaging ; 2022: 9742461, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480082

RESUMO

Cystic echinococcosis (CE) is a severe and neglected zoonotic disease that poses health and socioeconomic hazards. So far, the prevention and treatment of CE are far from meeting people's ideal expectations. Therefore, to gain insight into the prevention and diagnosis of CE, we explored the changes in RNA molecules and the biological processes and pathways involved in these RNA molecules as E. granulosus infects the host. Interferon (IFN)-γ, interleukin (IL)-2, IL-4, IL-6, IL-10, IL-17A, and tumor necrosis factor (TNF)-α levels in peripheral blood serum of E. granulosus infected and uninfected female BALB/c mice were measured using the cytometric bead array mouse Th1/Th2/Th17 cytokine kit. mRNA, microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA) profiles of spleen CD4+ T cells from the two groups of mice were analyzed using high-throughput sequencing and bioinformatics. The levels of IFN-γ, IL-2, IL-4, IL-6, IL-10, IL-17A, and TNF-α were significantly higher in the serum of the CE mice than in control mice (P < 0.01). In total, 1,758 known mRNAs, 37 miRNAs, 175 lncRNAs, and 22 circRNAs were differentially expressed between infected and uninfected mice (|fold change| ≥ 0.585, P < 0.05). These differentially expressed molecules are involved in chromosome composition, DNA/RNA metabolism, and gene expression in cell composition, biological function, and cell function. Moreover, closely related to the JAK/STAT signaling pathways, mitogen-activated protein kinase signaling pathways, P53 signaling pathways, PI3K/AKT signaling pathways, cell cycle, and metabolic pathways. E. granulosus infection significantly increased the levels of IFN-γ, IL-2, IL-4, IL-6, IL-10, IL-17A, and TNF-α in mouse peripheral blood of mice and significantly changed expression levels of various coding and noncoding RNAs. Further study of these trends and pathways may help clarify the pathogenesis of CE and provide new insights into the prevention and treatment of this disease.


Assuntos
Equinococose , Interleucina-10 , Animais , Linfócitos T CD4-Positivos/metabolismo , Feminino , Interleucina-10/metabolismo , Interleucina-17 , Interleucina-2 , Interleucina-4 , Interleucina-6 , Camundongos , Fosfatidilinositol 3-Quinases , RNA Mensageiro/genética , RNA não Traduzido , Baço , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/genética
12.
Front Immunol ; 13: 773276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211114

RESUMO

Cystic echinococcosis (CE) is a zoonotic parasitic disease spread worldwide caused by Echinococcus granulosus (Eg), which sometimes causes serious damage; however, in many cases, people are not aware that they are infected. A number of recombinant vaccines based on Eg are used to evaluate their effectiveness against the infection. Our previous report showed that recombinant Eg.P29 (rEg.P29) has a marvelous immunoprotection and can induce Th1 immune response. Furthermore, data of miRNA microarray in mice spleen CD4+ T cells showed that miR-126a-5p was significantly elevated 1 week after immunization by using rEg.P29. Therefore, in this perspective, we discussed the role of miR-126a-5p in the differentiation of naive CD4+ T cells into Th1/Th2 under rEg.P29 immunization and determined the mechanisms associated with delta-like 1 homolog (DLK1) and Notch1 signaling pathway. One week after P29 immunization of mice, we found that miR-126a-5p was significantly increased and DLK1 expression was decreased, while Notch1 pathway activation was enhanced and Th1 response was significantly stronger. The identical conclusion was obtained by overexpression of mmu-miR-126a-5p in primary naive CD4+ T cells in mice. Intriguingly, mmu-miR-126a-5p was significantly raised in serum from mice infected with protoscolex in the early stages of infection and markedly declined in the late stages of infection, while has-miR-126-5p expression was dramatically reduced in serum from CE patients. Taken together, we show that miR-126a-5p functions as a positive regulator of Notch1-mediated differentiation of CD4+ T cells into Th1 through downregulating DLK1 in vivo and in vitro. Hsa-miR-126-5p is potentially a very promising diagnostic biomarker for CE.


Assuntos
Antígenos de Helmintos/imunologia , Linfócitos T CD4-Positivos/imunologia , Equinococose/imunologia , Echinococcus granulosus/imunologia , MicroRNAs/imunologia , Zoonoses/imunologia , Adulto , Animais , Antígenos de Helmintos/genética , Linfócitos T CD4-Positivos/parasitologia , Proteínas de Ligação ao Cálcio/metabolismo , Estudos de Casos e Controles , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Equinococose/genética , Equinococose/parasitologia , Echinococcus granulosus/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Pessoa de Meia-Idade , Receptor Notch1/metabolismo , Transdução de Sinais/imunologia , Células Th1/imunologia , Células Th1/parasitologia , Células Th2/imunologia , Células Th2/parasitologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Zoonoses/genética , Zoonoses/parasitologia
13.
Dev Comp Immunol ; 129: 104336, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34921862

RESUMO

The NF-κB pathway activated by bacteria and viruses produces a series of antimicrobial peptides that participate in the innate immune response. In this study, two NF-κB subunits were cloned and identified from Hyriopsis cumingii (named Hcp65 and Hcp105) using RT-PCR and RACE. The predicted Hcp65 protein possessed a N-terminal Rel homology domain (RHD) and an Ig-like/plexins/transcription factors domain (IPT); the Hcp105 contained an RHD, an IPT domain, 6 ankyrin (ANK) domain and a death domain. Quantitative reverse transcription PCR (qRT-PCR) showed that Hcp65 and Hcp105 were constitutively expressed in the detected tissues, and were significantly up-regulated in hemocytes, hepatopancreas and gill of mussels challenged with lipopolysaccharide (LPS), peptidoglycan (PGN) and polyinosinic-polycytidylic acid (poly I: C). The dsRNA-mediated silencing of Hcp65 and Hcp105 caused significant reduction of immune genes such as lysozyme (HcLyso), theromacin (Hcther), whey acid protein (HcWAP), LPS-binding protein/bactericidal permeability protein (HcLBP/BPI) 1 and 2. In addition, subcellular localization experiments showed that Hcp65 and Hcp105 proteins were expressed in both the nucleus and cytoplasm of HEK-293T cells, and Hcp50 proteins (mature peptide of Hcp105) were mainly localized in the nucleus. The recombinant Hcp65 and Hcp50 protein could form homodimer and heterodimer and bind κB site in vitro. These results provide useful information for understanding the role of NF-κB in mollusks.


Assuntos
NF-kappa B/metabolismo , Proteínas de Fase Aguda , Animais , Anti-Infecciosos , Bivalves/imunologia , Proteínas de Transporte , DNA Complementar/genética , Regulação da Expressão Gênica , Hemócitos/metabolismo , Hepatopâncreas/imunologia , Imunidade Inata/genética , Lipopolissacarídeos , Glicoproteínas de Membrana , Muramidase/metabolismo , Peptidoglicano/metabolismo , Filogenia , Fator de Transcrição RelA , Unionidae/imunologia , Vibrio parahaemolyticus/imunologia
14.
Nutr Metab (Lond) ; 18(1): 98, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724970

RESUMO

BACKGROUND: Recent studies suggest potential benefits of applying L-carnitine in the treatment of cancer cachexia, but the precise mechanisms underlying these benefits remain unknown. This study was conducted to determine the mechanism by which L-carnitine reduces cancer cachexia. METHODS: C2C12 cells were differentiated into myotubes by growing them in DMEM for 24 h (hrs) and then changing the media to DMEM supplemented with 2% horse serum. Differentiated myotubes were treated for 2 h with TNF-α to establish a muscle atrophy cell model. After treated with L-carnitine, protein expression of MuRF1, MaFbx, FOXO3, p-FOXO3a, Akt, p-Akt, p70S6K and p-p70S6K was determined by Western blotting. Then siRNA-Akt was used to determine that L-carnitine ameliorated cancer cachexia via the Akt/FOXO3/MaFbx. In vivo, the cancer cachexia model was established by subcutaneously transplanting CT26 cells into the left flanks of the BALB/c nude mice. After treated with L-carnitine, serum levels of IL-1, IL-6 and TNF-α, and the skeletal muscle content of MuRF1, MaFbx, FOXO3, p-FOXO3a, Akt, p-Akt, p70S6K and p-p70S6K were measured. RESULTS: L-carnitine increased the gastrocnemius muscle (GM) weight in the CT26-bearing cachexia mouse model and the cross-sectional fiber area of the GM and myotube diameters of C2C12 cells treated with TNF-α. Additionally, L-carnitine reduced the protein expression of MuRF1, MaFbx and FOXO3a, and increased the p-FOXO3a level in vivo and in vitro. Inhibition of Akt, upstream of FOXO3a, reversed the effects of L-carnitine on the FOXO3a/MaFbx pathway and myotube diameters, without affecting FOXO3a/MuRF-1. In addition to regulating the ubiquitination of muscle proteins, L-carnitine also increased the levels of p-p70S6K and p70S6K, which are involved in protein synthesis. Akt inhibition did not reverse the effects of L-carnitine on p70S6K and p-p70S6K. Hence, L-carnitine ameliorated cancer cachexia via the Akt/FOXO3/MaFbx and p70S6K pathways. Moreover, L-carnitine reduced the serum levels of IL-1 and IL-6, factors known to induce cancer cachexia. However, there were minimal effects on TNF-α, another inducer of cachexia, in the in vivo model. CONCLUSION: These results revealed a novel mechanism by which L-carnitine protects muscle cells and reduces inflammation related to cancer cachexia.

15.
Parasit Vectors ; 14(1): 324, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127037

RESUMO

BACKGROUND: Echinococcosis is a severe zoonotic parasitic disease which severely affects the health of the hosts. The diagnosis of echinococcosis depends mainly on imaging examination. However, the patient is often in the late stage of the disease when the symptoms appear, thus limiting the early diagnosis of echinococcosis. The treatment and prognosis of the patients are hampered because of long-term asymptomatic latency. Metabolomics is a new discipline developed in the late 1990s. It reflects a series of biological responses in pathophysiological processes by demonstrating the changes in metabolism under the influence of internal and external factors. When the organism is invaded by pathogens, the alteration in the characteristics of metabolites in cells becomes extremely sensitive. Here, we used a metabolomics approach involving liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) to determine the molecular mechanism of cystic echinococcosis (CE) and to develop an effective method for CE diagnosis. METHODS: Twenty 8-week-old female BALB/c mice were divided into normal and Echinococcus granulosus infection groups. To develop the E. granulosus infection model, mice were infected with protoscoleces. Six weeks later, the abdomens of the mice showed significant bulging. An LC-MS/MS system-based metabolomics approach was used to analyse the liver and faeces to reveal the metabolic profiles of mice with echinococcosis. RESULTS: We found that the metabolism of nucleotides, alkaloids, amino acids, amides, and organic acids in mice is closely interrelated with E. granulosus infection. In the liver, the metabolic pathways of tyrosine and tryptophan biosynthesis; phenylalanine, valine, leucine and isoleucine biosynthesis; and phenylalanine metabolism were notably associated with the occurrence and development of hydatid disease, and in the faeces, pantothenate and CoA biosynthesis are thought to be closely associated with the development of CE. CONCLUSION: The metabolomics approach used in this study provides a reference for a highly sensitive and specific diagnostic and screening method for echinococcosis.


Assuntos
Equinococose/parasitologia , Fezes/parasitologia , Fígado/metabolismo , Fígado/parasitologia , Redes e Vias Metabólicas , Metabolômica/métodos , Animais , Equinococose/diagnóstico , Echinococcus , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Zoonoses/parasitologia
16.
Parasit Vectors ; 14(1): 295, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082780

RESUMO

BACKGROUND: Cystic echinococcosis (CE) is a parasitic disease that is caused by Echinococcus granulosus (Eg). The recombinant Echinococcus granulosus antigen P29 (rEg.P29) was shown to confer effective immunity to sheep and mice during E. granulosus secondary infection in our previous study. In this study, we sought to investigate the ability of long noncoding RNA 028466 (lncRNA028466) as a regulator for the protective immunity mediated by rEg.P29 vaccination and to study the effects of lncRNA028466 on CD4+T cell differentiation in mice spleen. METHODS: Female BALB/c mice were divided into two groups and were vaccinated subcutaneously with rEg.P29 antigen and PBS as a control (12 mice each group). Following prime-boost vaccination, CD4+T, CD8+T, and B cells from the spleen were isolated by flow cytometry. Quantitative real-time PCR (qRT-PCR) was performed to measure the expression of lncRNA028466 in these three kinds of cells. Then, lncRNA028466 was overexpressed and knocked down in naive CD4+T cells, and Th1 and Th2 cytokine expression was detected. qRT-PCR, western blot, and ELISA were performed to evaluate the production of IFN-γ, IL-2, IL-4, and IL-10, and flow cytometry was performed to detect the differentiation of Th1 and Th2 subgroups. RESULTS: lncRNA028466 was significantly decreased after the second week of immunization with rEg.P29 antigen. The proportion of CD4+ T cells was increased after rEg.P29 immunization. Overexpression of lncRNA028466 facilitated the production of IL-4, IL-10 and suppressed the production of IFN-γ, IL-2. Furthermore, after transfection with siRNA028466, IL-2 production was facilitated and IL-10 production was suppressed in naive CD4+ T cells. CONCLUSIONS: Immunization with rEg.P29 downregulated the expression of lncRNA028466, which was related to a higher Th1 immune response and a lower Th2 immune response. Our results suggest that lncRNA028466 may be involved in rEg.P29-mediated immune response by regulating cytokine expression of Th1 and Th2.


Assuntos
Antígenos de Helmintos/imunologia , Citocinas/genética , Echinococcus granulosus/imunologia , Regulação da Expressão Gênica , RNA Longo não Codificante/genética , Células Th1/imunologia , Células Th2/imunologia , Animais , Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos/administração & dosagem , Antígenos de Helmintos/genética , Citocinas/imunologia , Feminino , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Imunização , Camundongos , Camundongos Endogâmicos BALB C , RNA Longo não Codificante/imunologia
17.
Front Oncol ; 11: 648985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026624

RESUMO

Castration-resistant (androgen-independent) and PTEN-deficient prostate cancer is a challenge in clinical practice. Sorafenib has been recommended for the treatment of this type of cancer, but is associated with several adverse effects. Platycodin D (PD) is a triterpene saponin with demonstrated anti-cancer effects and a good safety profile. Previous studies have indicated that PC3 cells (PTEN -/-, AR -/-) are sensitive to PD, suggesting that it may also be a useful treatment for castration-resistance prostate cancer. We herein investigated the effects of combining PD with sorafenib to treat PTEN-deficient prostate cancer cells. Our data show that PD promotes sorafenib-induced apoptosis and cell cycle arrest in PC3 cells. Of interest, PD only promoted the anti-cancer effects of sorafenib in Akt-positive and PTEN-negative prostate cancer cells. Mechanistic studies revealed that PD promoted p-Akt ubiquitination by increasing the p-Akt level. PD also increased the protein and mRNA expression of FOXO3a, the downstream target of Akt. Meanwhile, PD promoted the activity of FOXO3a and increased the protein expression of Fasl, Bim and TRAIL. Interestingly, when FOXO3a expression was inhibited, the antitumor effects of both PD and sorafenib were individually inhibited, and the more potent effects of the combination treatment were inhibited. Thus, the combination of PD and sorafenib may exert potent anti-cancer effects specifically via FOXO3a. The use of Akt inhibitors or FOXO3a agonists, such as PD, may represent a promising approach for the treatment of androgen-independent and PTEN-deficient prostate cancer.

18.
Parasitol Res ; 120(7): 2557-2567, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34043054

RESUMO

Several strategies exist to prevent and control echinococcosis, a global parasitic disease. However, most treatments are ineffective and adverse effects are common. Therefore, we aimed to screen protoscolex antigen molecules of Echinococcus granulosus to identify a diagnostic biomarker for hydatid disease. Published E. granulosus transcriptome sequencing data were analyzed to screen for antigen molecules that are highly expressed in protoscoleces but not in oncospheres. The membrane protein EG-06283 (annotated as Frizzled-4) was selected from 16 antigens, and its gene fragment was subjected to codon optimization and synthesis. rEG-06283 expression was induced in the pET-24a/EG-06283/BL21 strain; subsequently, the protein was purified and subcutaneously injected into ICR mice at weeks 0, 2, 4, and 6. Blood sampling occurred periodically to quantify serum immunoglobulin G (IgG) levels via enzyme-linked immunosorbent assays (ELISA). Immunogenicity was determined by western blot assays using sera from normal mice and mice with secondary hydatid infections. The antigen's immune reactivity and diagnostic value were validated using sera of patients with hydatid disease. ELISA results confirmed that the antigen molecule induced specific IgG production in mice, resulting in significantly higher levels than those in the adjuvant and control groups (P < 0.05). The western blot results indicated that the protein was recognized by antibodies in the sera of mice with hydatid infection and the antisera of immunized mice. Quantification of protein levels in the sera of patients with hydatid disease significantly differed from levels in healthy participants (P < 0.05). These results indicate that rEG-06283 is a potential diagnostic antigen for E. granulosus infections.


Assuntos
Antígenos de Helmintos/classificação , Equinococose/diagnóstico , Echinococcus granulosus/imunologia , Animais , Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos/genética , Antígenos de Helmintos/imunologia , Antígenos de Helmintos/isolamento & purificação , Biomarcadores , Western Blotting , Biologia Computacional , Equinococose/imunologia , Echinococcus granulosus/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Camundongos , Camundongos Endogâmicos ICR , Distribuição Aleatória , Sensibilidade e Especificidade
19.
Biomed Res Int ; 2020: 8024763, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32908913

RESUMO

Cystic echinococcosis (CE) is a zoonotic disease caused by Echinococcus granulosus (Eg) infection. Our previous study confirmed that recombinant Eg.P29 (rEg.P29) could protect against echinococcus granulosus secondary infection in sheep and mice. The aim of the study was to investigate the association between immunoprotection of rEg.P29 vaccine and mmu-miR-374b-5p (miR-374b-5p) and study the immunity influence of miR-374b-5p on CD4+ T cells in mice spleen. MiR-374b-5p level was significantly increased after the second-week and the fourth week of vaccination with rEg.P29. Overexpression of miR-374b-5p increased IFN-γ, IL-2, IL-17A mRNA levels and decreased IL-10 mRNA levels in CD4+ T cells. Moreover, the inhibition of miR-374b-5p decreased IFN-γ and IL-17A and increased IL-10 mRNA levels in CD4+ T cells; this was further confirmed by the flow cytometry. The vaccination of rEg.P29 enhanced miR-374b-5p expression that was associated with a higher Th1 and Th17 immune response, a lower IL-10 mRNA production with miR-374b-5p overexpression, a lower Th1 immune response, and a higher IL-10 mRNA levels with miR-374b-5p inhibitions. To sum up, these data suggest that miR-374b-5p may participate in rEg.P29 immunity by regulating Th1 and Th17 differentiation.


Assuntos
Antígenos de Helmintos/imunologia , Linfócitos T CD4-Positivos/imunologia , Equinococose/imunologia , Echinococcus granulosus/imunologia , MicroRNAs/imunologia , Zoonoses/imunologia , Animais , Antígenos de Helmintos/genética , Linfócitos T CD4-Positivos/parasitologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Citocinas/genética , Equinococose/genética , Equinococose/parasitologia , Echinococcus granulosus/genética , Feminino , Proteínas de Helminto/genética , Proteínas de Helminto/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ovinos , Células Th1/imunologia , Células Th1/parasitologia , Células Th17/imunologia , Células Th17/parasitologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Zoonoses/genética , Zoonoses/parasitologia
20.
Int J Oncol ; 56(2): 439-447, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31894265

RESUMO

Ophiopogonin D' (OPD') is a natural compound extracted from Ophiopogon japonicus, which is a plant used in traditional Chinese medicine. Our previous study has indicated that OPD' exhibits antitumor activity against androgen­independent prostate cancer (PCa), but the effects and the underlying molecular mechanism of action of OPD' in androgen­dependent PCa were unclear. In the present study, OPD' induced significant necroptosis in androgen­dependent LNCaP cancer cells by activating receptor­interacting serine/threonine­protein kinase 1 (RIPK1). Exposure to OPD' also increased Fas ligand (FasL)­dependent RIPK1 protein expression. The OPD'­induced necroptosis was inhibited by a RIPK1 inhibitor necrostatin­1, further supporting a role for RIPK1 in the effects of OPD´. The antitumor effects of OPD' were also inhibited by a mixed lineage kinase domain­like protein (MLKL) inhibitor necrosulfonamide. Following treatment with inhibitors of RIPK1 and MLKL, the effects of OPD' on LNCaP cells were inhibited in an additive manner. In addition, co­immunoprecipitation assays demonstrated that OPD' induced RIPK3 upregulation, leading to the assembly of a RIPK3­MLKL complex, which was independent of RIPK1. Furthermore, OPD' increased the expression of Fas­associated death domain, which is required to induce necroptosis in LNCaP cells. OPD' also regulated the expression levels of FasL, androgen receptor and prostate­specific antigen in a RIPK1­dependent manner. These results suggested that OPD' may exhibit potential as an anti­PCa agent by inducing RIPK1­ and MLKL­dependent necroptosis.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Necroptose/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Saponinas/farmacologia , Espirostanos/farmacologia , Acrilamidas/farmacologia , Androgênios/metabolismo , Antineoplásicos Fitogênicos/uso terapêutico , Linhagem Celular Tumoral , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Masculino , Neoplasias da Próstata/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , RNA Interferente Pequeno , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Saponinas/uso terapêutico , Espirostanos/uso terapêutico , Sulfonamidas/farmacologia , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA