Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 134: 155973, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39241384

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic and relapsing disease marked by chronic tissue inflammation that alters the integrity and function of the gut, seriously impacting patient health and quality of life. Aucklandiae Radix (AR), known as Mu Xiang in Chinese, is a traditional Chinese medicine documented in Chinese Pharmacopoeia with effects of strengthening the intestine and stopping diarrhea. However, the potential of AR in treating intestinal inflammation and its underlying mechanism have yet to be further elucidated. PURPOSE: The objective of this study was to explore the protective effect and the potential mechanism attributable to AR for treating ulcerative colitis (UC). STUDY DESIGN AND METHODS: A murine model of UC was constructed using dextran sulfate sodium (DSS) to examine the therapeutic potential of AR in alleviating inflammation and modulating the immune response. Advanced techniques such as photocrosslinking target fishing technique, click chemistry, Western blot analysis, real-time quantitative PCR, flow cytometry, immunofluorescence, and immunohistochemistry were employed to unveil the therapeutic mechanism of AR for treating IBD. RESULTS: AR decreased disease activity index (DAI) score to alleviate the course of IBD through ameliorating intestinal barrier function in DSS-induced mice. Furthermore, AR suppressed NF-κB and NLRP3 pathways to reduce the release of pro-inflammatory factors interleukin-6 and 1ß (IL-6 and IL-1ß) and tumor necrosis factor α (TNF-α), allowing to alleviate the inflammatory response. Flow cytometry revealed that AR could reduce the accumulation of intestinal macrophages and neutrophils, maintaining intestinal immune balance by regulating the ratio of Treg to Th17 cells. It was worth noting that pyruvate kinase isozyme type M2 (PKM2) served as a potential target of AR using the photocrosslinking target fishing technology, which was further supported by cellular thermal shift assay (CETSA), drug affinity target stability (DARTS), and PKM2 knockdown experiments. CONCLUSION: AR targeted PKM2 to inhibit NF-κB and NLRP3 pathways, thereby modulating the inflammatory response and immunity to alleviate DSS-induced UC. These findings suggested the potential of AR in the treatment of UC and AR as a candidate for developing PKM2 regulators.


Assuntos
Colite Ulcerativa , Sulfato de Dextrana , Medicamentos de Ervas Chinesas , Piruvato Quinase , Animais , Masculino , Camundongos , Proteínas de Transporte/metabolismo , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piruvato Quinase/metabolismo
2.
J Hazard Mater ; 458: 131890, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406527

RESUMO

Air pollution represented by particulate matter 2.5 (PM2.5) is closely related to diseases of the respiratory system. Although the understanding of its mechanism is limited, pulmonary inflammation is closely correlated with PM2.5-mediated lung injury. Soluble epoxide hydrolase (sEH) and epoxy fatty acids play a vital role in the inflammation. Herein, we attempted to use the metabolomics of oxidized lipids for analyzing the relationship of oxylipins with lung injury in a PM2.5-mediated mouse model, and found that the cytochrome P450 oxidases/sEH mediated metabolic pathway was involved in lung injury. Furthermore, the sEH overexpression was revealed in lung injury mice. Interestingly, sEH genetic deletion or the selective sEH inhibitor TPPU increased levels of epoxyeicosatrienoic acids (EETs) in lung injury mice, and inactivated pulmonary macrophages based on the MAPK/NF-κB pathway, resulting in protection against PM2.5-mediated lung injury. Additionally, a natural sEH inhibitor luteolin from Inula japonica displayed a pulmonary protective effect towards lung injury mediated by PM2.5 as well. Our results are consistent with the sEH message and protein being both a marker and mechanism for PM2.5-induced inflammation, which suggest its potential as a pharmaceutical target for treating diseases of the respiratory system.


Assuntos
Lesão Pulmonar , Pneumonia , Camundongos , Animais , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Inflamação , Pulmão/metabolismo
3.
Int J Biol Macromol ; 235: 123911, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36878397

RESUMO

Soluble epoxide hydrolase (sEH) serves as a potential target in inflammation-related diseases. Based on the bioactivity-guided separation, a new sesquiterpenoid inulajaponoid A (1) was isolated from Inula japonica with a sEH inhibitory effect, together with five known compounds, such as 1-O-acetyl-6-O-isobutyrylbritannilactone (2), 6ß-hydroxytomentosin (3), 1ß,8ß-dihydroxyeudesma-4(15),11(13)-dien-12,6α-olide (4), (4S,6S,7S,8R)-1-O-acetyl-6-O-(3-methylvaleryloxy)-britannilactone (5), and 1-acetoxy-6α-(2-methylbutyryl)eriolanolide (6). Among them, compounds 1 and 6 were assigned as mixed and uncompetitive inhibitors, respectively. The result of immunoprecipitation (IP)-MS demonstrated the specific binding of compound 6 to sEH in the complex system, which was further confirmed by the fluorescence-based binding assay showing its equilibrium dissociation constant (Kd = 2.43 µM). The detail molecular stimulation revealed the mechanism of action of compound 6 with sEH through the hydrogen bond of amino acid residue Gln384. Furthermore, this natural sEH inhibitor (6) could suppress the MAPK/NF-κB activation to regulate inflammatory mediators, such as NO, TNF-α, and IL-6, which confirmed the anti-inflammatory effect of inhibition of sEH by 6. These findings provided a useful insight to develop sEH inhibitors upon the sesquiterpenoids.


Assuntos
Epóxido Hidrolases , Simulação de Dinâmica Molecular , Epóxido Hidrolases/química , Transdução de Sinais , Regulação da Expressão Gênica , Fator de Necrose Tumoral alfa/metabolismo
4.
Phytomedicine ; 107: 154377, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36116200

RESUMO

BACKGROUND: Acute lung injury (ALI) is a life-threatening lung disease and characterized by pulmonary edema and atelectasis. Inula japonica Thunb. is a commonly used traditional Chinese medicine for the treatment of lung diseases. However, the potential effect and mechanism of total terpenoids of I. japonica (TTIJ) on ALI remain obscure. PURPOSE: This study focused on the protective effect of TTIJ on lipopolysaccharide (LPS)-induced ALI in mice and its potential mechanism. STUDY DESIGN AND METHODS: A mouse model of ALI was established by intratracheal instillation of LPS to investigate the protective effect of TTIJ. RNA-seq and bioinformatics were then performed to reveal the underlying mechanism. Finally, western blot and real-time qPCR were used to verify the effects of TTIJ on the inflammation and oxidative stress. RESULTS: TTIJ notably attenuated LPS-induced histopathological changes of lung. The RNA-seq result suggested that the protective effect of TTIJ on LPS-induced ALI were associated with the Toll-like receptor 4 (TLR4) and nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathways. Pretreatment with TTIJ significantly reduced the inflammation and oxidative stress via regulating levels of pro-inflammatory and anti-oxidative cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), superoxide dismutase (SOD), and glutathione (GSH), in LPS-induced ALI mice. TTIJ treatment could suppress the cyclooxygenase-2 (COX-2) expression level and the phosphorylation of p65, p38, ERK, and JNK through the inactivation of the MAPK/NF-κB signaling pathway in a TLR4-independent manner. Meanwhile, TTIJ treatment upregulated expression levels of proteins involved in the Nrf2 signaling pathway, such as heme oxygenase-1 (HO-1), NAD(P)H: quinoneoxidoreductase-1 (NQO-1), glutamate-cysteine ligase catalytic subunit (GCLC), and glutamate-cysteine ligase modifier subunit (GCLM), via activating the Nrf2 receptor, which was confirmed by the luciferase assay. CONCLUSION: TTIJ could activate the Nrf2 receptor to alleviate the inflammatory response and oxidative stress in LPS-induced ALI mice, which suggested that TTIJ could serve as the potential agent in the treatment of ALI.


Assuntos
Lesão Pulmonar Aguda , Inula , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , NAD/metabolismo , NAD/farmacologia , NAD/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Terpenos/farmacologia , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Phytomedicine ; 107: 154380, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36150346

RESUMO

BACKGROUND: Acute lung injury (ALI) is a severe respiratory disease characterized by diffuse lung interstitial and respiratory distress and pulmonary edema with a mortality rate of 35%-40%. Inula japonica Thunb., known as "Xuan Fu Hua" in Chinese, is a traditional Chinese medicine Inulae Flos to use for relieving cough, eliminating expectorant, and preventing bacterial infections in the clinic, and possesses an anti-pulmonary fibrosis effect. However, the effect and action mechanism of I. japonica on ALI is still unclear. PURPOSE: This study aimed to investigate the protective effect and underlying mechanism of total flavonoids of I. japonica (TFIJ) in the treatment of ALI. STUDY DESIGN AND METHODS: A mouse ALI model was established through administration of LPS by the intratracheal instillation. Protective effects of TFIJ in the inflammation and oxidative stress were studied in LPS-induced ALI mice based on inflammatory and oxidative stress factors, including MDA, MPO, SOD, and TNF-α. Lipid metabolomics, bioinformatics, Western blot, quantitative real-time PCR, and immunohistochemistry were performed to reveal the potential mechanism of TFIJ in the treatment of ALI. RESULTS: TFIJ significantly alleviated the interstitial infiltration of inflammatory cells and the collapse of the alveoli in LPS-induced ALI mice. Lipid metabolomics demonstrated that TFIJ could significantly affect the CYP2J/sEH-mediated arachidonic acid metabolism, such as 11,12-EET, 14,15-EET, 8,9-DHET, 11,12-DHET, and 14,15-DHET, revealing that sEH was the potential target of TFIJ, which was further supported by the recombinant sEH-mediated the substrate hydrolysis in vitro (IC50 = 1.18 µg/ml). Inhibition of sEH by TFIJ alleviated the inflammatory response and oxidative stress via the MAPK, NF-κB, and Nrf2 signaling pathways. CONCLUSION: These results demonstrated that TFIJ could suppress the sEH activity to stabilize the level of EETs, allowing the alleviation of the pathological course of lung injury in LPS-treated mice, which suggested that TFIJ could serve as the potential agents in the treatment of ALI.


Assuntos
Lesão Pulmonar Aguda , Inula , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Ácido Araquidônico/metabolismo , Expectorantes/efeitos adversos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Lipopolissacarídeos/farmacologia , Pulmão , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA