Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 922: 171333, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38423325

RESUMO

Utilizing alkaline solid wastes, such as steel slag, as substrates in tidal flow constructed wetlands (TFCWs) can effectively neutralize the acidity generated by nitrification. However, the impacts of steel slag on microbial communities and the potential risk of heavy metal release remain poorly understood. To address these knowledge gaps, this study compared the performance and microbial community structure of TFCWs filled with a mixture of steel slag and zeolite (TFCW-S) to those filled with zeolite alone (TFCW-Z). TFCW-S exhibited a much higher NH4+-N removal efficiency (98.35 %) than TFCW-Z (55.26 %). Additionally, TFCW-S also achieved better TN and TP removal. The steel slag addition helped maintain the TFCW-S effluent pH at around 7.5, while the TFCW-Z effluent pH varied from 3.74 to 6.25. The nitrification and denitrification intensities in TFCW-S substrates were significantly higher than those in TFCW-Z, consistent with the observed removal performance. Moreover, steel slag did not cause excessive heavy metal release, as the effluent concentrations were below the standard limits. Microbial community analysis revealed that ammonia-oxidizing bacteria, ammonia-oxidizing archaea, and complete ammonia-oxidizing bacteria coexisted in both TFCWs, albeit with different compositions. Furthermore, the enrichment of heterotrophic nitrification-aerobic denitrification bacteria in TFCW-S likely contributed to the high NH4+-N removal. In summary, these findings demonstrate that the combined use of steel slag and zeolite in TFCWs creates favorable pH conditions for ammonia-oxidizing microorganisms, leading to efficient ammonia removal in an environmentally friendly manner.


Assuntos
Microbiota , Zeolitas , Desnitrificação , Amônia , Áreas Alagadas , Nitrogênio , Nitrificação
2.
J Colloid Interface Sci ; 656: 597-608, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38040500

RESUMO

Carbon materials play a crucial role in promoting the Fe(III)/Fe(II) redox cycle in heterogeneous Fenton reactions. However, the electron transfer efficiency between carbon and iron is typically low. In this study, we prepared a novel heterogeneous Fenton catalyst, humboldtine/hydrothermal carbon (Hum/HTC), using a one-step hydrothermal method and achieved about 100 % reduction in Fe(III) during synthesis. Moreover, the HTC continuously provided electrons to promote Fe(II) regeneration during the Fenton reaction. Electron paramagnetic resonance (EPR) and quenching experiments showed that Hum/HTC completely oxidized As(III) to As(V) via free radical and non-free radical pathways. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) and two-dimensional correlation spectroscopy (2D-COS) analyses revealed that monodentate mononuclear (MM) and bidentate binuclear (BB) structures were the dominant bonding methods for As(V) immobilization. 40 %Hum/HTC exhibited a maximum As(III) adsorption capacity of 167 mg/g, which was higher than that of most reported adsorbents. This study provides a novel strategy for the efficient reduction of Fe(III) during catalyst synthesis and demonstrates that HTC can continuously accelerate Fe(II) regeneration in heterogeneous Fenton reactions.

3.
Chemosphere ; 326: 138435, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36933838

RESUMO

Calcium oxalate (CaOx) crystals in plants act as a sink for excess Ca and play an essential role in detoxifying heavy metals (HMs). However, the mechanism and related influencing factors remain unclear. Amaranth (Amaranthus tricolor L.) is a common edible vegetable rich in CaOx and a potential Cd hyperaccumulation species. In this study, the hydroponic experiment was carried out to investigate the effect of exogenous Ca concentrations on Cd uptake by amaranth. The results showed that either insufficient or excess Ca supply inhibited amaranth growth, while the Cd bioconcentration factor (BCF) increased with Ca concentration. Meanwhile, the sequence extraction results demonstrated that Cd mainly accumulated as pectate and protein-bound species (NaCl extracted) in the root and stem, compared to pectate, protein, and phosphate-bound (acetic acid extractable) species in the leaf. Correlation analysis showed that the concentration of exogenous Ca was positively correlated with amaranth-produced CaOx crystals but negatively correlated with insoluble oxalate-bound Cd in the leaf. However, since the accumulated insoluble oxalate-bound Cd was relatively low, Cd detoxification via the CaOx pathway in amaranth is limited.


Assuntos
Amaranthus , Metais Pesados , Poluentes do Solo , Cádmio/análise , Cálcio/metabolismo , Amaranthus/metabolismo , Oxalato de Cálcio/metabolismo , Metais Pesados/metabolismo , Cálcio da Dieta/metabolismo , Poluentes do Solo/análise
4.
J Colloid Interface Sci ; 629(Pt B): 847-858, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36202028

RESUMO

Improving the separation efficiency and transfer ability of photoinduced electrons/holes in pyrite (FeS2)-based photocatalytic materials is significant for the photoreduction of hexavalent chromium (Cr(VI)) but still remains a challenge. Herein, a novel homojunction was prepared through in-situ growth of nickel (Ni) doped FeS2 nanoparticles on FeS2 nanobelts (denoted as Ni-FeS2/FeS2). Systematical characterizations revealed that Ni doped FeS2 nanoparticles have been successfully in situ grown along the lattice of FeS2 nanobelts. Photoreduction experiments demonstrated that the Ni-FeS2/FeS2 homojunction with 2 mmol Ni doping contents (denoted as 2Ni-FeS2/FeS2) exhibited the optimum Cr(VI) reduction efficiency among the studied catalysts. Density Functional Theory (DFT) calculated results verified that Ni doping could not only be advantageous for the formation of sulfur vacancies but also modify the band gap and band structure of FeS2 nanoparticles. Moreover, several doping energy levels caused by Ni doping have also appeared near the Fermi level of FeS2 nanoparticles. The migration paths of electrons and the existence of internal electric field (IEF) in homojunction were further verified by the calculation of work function. To sum up, the doping energy levels and IEF that produced by homojunction played important roles in accelerating the separation efficiency of its photogenerated carriers.

5.
J Hazard Mater ; 443(Pt B): 130242, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36327838

RESUMO

Microbial-induced carbonate precipitation (MICP) is a promising technology to immobilize/remediate heavy metals (HMs) like cadmium (Cd). However, the long-term stability of MICP-immobilized HMs is unclear, especially in farmland where chemical fertilization is necessary. Therefore, we performed MICP treatment on soils contaminated with various Cd compounds (CdCO3, CdS, and CdCl2) and added diammonium phosphate (DAP) to explore the impact of phosphate on the MICP-immobilized Cd. The results showed that MICP treatment was practical to immobilize the exchangeable Cd but to mobilize the carbonate and Fe/Mn oxide-bound Cd. After applying DAP, soil pH declined due to ammonium nitrification. At high P/Ca molar ratios (1/2 and 1), partial previously immobilized Cd was released due to the carbonate dissolution. Contrarily, exchangeable Cd transformed to less mobilizable Fe/Mn oxide-bound at low P/Ca molar ratios (1/4 and 1/8). Meanwhile, other treatments were also helpful in avoiding the release of immobilized Cd, such as applying non-ammonium phosphate and adding lime material after soil acidification. Our investigation suggested that the long-term stability of HMs in remediated sites should be carefully evaluated, especially in agricultural areas with phosphate and nitrogen fertilizer input.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Metais Pesados/análise , Fosfatos/química , Carbonatos , Óxidos/química , Carbonato de Cálcio
6.
Chemosphere ; 309(Pt 1): 136727, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36209854

RESUMO

The ammonia removal performance of tidal flow constructed wetlands (TFCWs) requires to be improved under high hydraulic loading rates (HLRs). The pH decrease caused by nitrification may adversely affect the NH4+-N removal and ammonia-oxidizing microorganisms (AOMs) of TFCWs. Herein, TFCWs with zeolite (TFCW_Z) and a mixture of zeolite and steel slag (TFCW_S) were built to investigate the influence of steel slag on NH4+-N removal and AOMs. Both TFCWs were operated under short flooding/drying (F/D) cycles and high HLRs (3.13 and 4.69 m3/(m2 d)). The results revealed that a neutral effluent pH (6.98-7.82) was achieved in TFCW_S owing to the CaO dissolution of steel slag. The NH4+-N removal efficiencies in TFCW_S (91.2 ± 5.1%) were much higher than those in TFCW_Z (73.2 ± 7.1%). Total nitrogen (TN) removal was poor in both TFCWs mainly due to the low influent COD/TN. Phosphorus removal in TFCW_S was unsatisfactory because of the short hydraulic retention time. The addition of steel slag stimulated the flourishing AOMs, including Nitrosomonas (ammonia-oxidizing bacteria, AOB), Candidatus_Nitrocosmicus (ammonia-oxidizing archaea, AOA), and comammox Nitrospira, which may be responsible for the better ammonia removal performance in TFCW_S. PICRUSt2 showed that steel slag also enriched the relative abundance of functional genes involved in nitrification (amoCAB, hao, and nxrAB) but inhibited genes related to denitrification (nirK, norB, and nosZ). Quantitative polymerase chain reaction (qPCR) revealed that complete AOB (CAOB) and AOB contributed more to the amoA genes in TFCW_S and TFCW_Z, respectively. Therefore, this study revealed that the dominant AOMs could be significantly changed in zeolite-based TFCW by adding steel slag to regulate the pH in situ, resulting in a more efficient NH4+-N removal performance.


Assuntos
Áreas Alagadas , Zeolitas , Amônia , Aço , Nitrificação , Nitrogênio , Archaea , Fósforo , Oxirredução
7.
J Hazard Mater ; 437: 129293, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35724618

RESUMO

Biogenic isoprene is an important pollutant for regional air quality. Being ubiquitously distributed on the earth surface, manganese (hydr)oxides should play a vital role in the transformation of isoprene. Cryptomelane is a typical manganese oxide with isomorphous substitution of Fe for Mn, but less attention has been paid to its heterogeneous reaction with isoprene. When Fe3+ replaces Mn3+, K+ is depleted and Mn3+ is oxidized to Mn4+. In contrast, oxygen vacancies are formed when Fe3+ substitutes Mn4+. Fe substitution creates weak crystallites and abundant mesopores, resulting in the increase of isoprene adsorption. As found by theoretical calculations, the Mn4+-O2- bonds at the cross sections of the tunnels is more active than that on the outer wall of the tunnels. After the adsorption of isoprene, bridging carboxylate species and hydrogen-bonding water are produced and the surface octahedra are distorted, i.e., Mn4+O6 → Mn3+O6-δ. As the heat facilitates the breakage of Mn4+-O2-, the increase of environmental temperature enhances the oxidation of isoprene. The above findings shed light on the effect of Fe substitution in cryptomelane to enhance the oxidation of isoprene, and illustrates that heterogeneous reaction with isoprene impairs the transformation of other environmental substances on cryptomelane.

8.
Bull Environ Contam Toxicol ; 107(6): 1220-1226, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34110443

RESUMO

The combined pollution of arsenic (As) and cadmium (Cd) are quite common in the polymetallic mining areas located in southern China. In the present study, field experiments were established for the purpose of exploring a simultaneous remediation strategy of rice variety-water management-contaminant immobilization on the As and Cd contamination in paddy soil. The obtained results revealed that the Maba Yinzhan was the best low-accumulation rice variety, with As and Cd concentrations of 0.54 and 0.16 mg kg-1, respectively, in the rice grains. On the basis of water management during heading stage, the treatment using 0.15 wt% lime plus 0.5 wt% ferro-ferric oxide (FO) decreased the As and Cd concentrations by 64.02% and 34.78%, respectively, in the grains. The results of this study potentially provide an effective remediation solution for the As/Cd contaminated soils in polymetallic mining areas.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/análise , Cádmio/análise , Mineração , Solo , Poluentes do Solo/análise
9.
J Environ Manage ; 264: 110477, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32250903

RESUMO

Structural variations of a mineral dictate its adsorption capacity which affects the mobility and toxicity of contaminants in natural and engineered systems. Present batch study evaluates the adsorption of lead (Pb) and cadmium (Cd) onto three magnetites having nanometric (M1-30 nm and M2-60 nm) and micrometric particle sizes (M3-1.5 µm). Obtained data revealed that particle size of tested magnetites strongly affected the extent and kinetics of metal adsorption and desorption. Observed order of adsorption efficiency was M1 > M2 > M3 with optimum monolayer adsorption of 408.14, 331.40, 178.47 mg/g (for Pb) and 228.05, 170.86, 83.49 mg/g (for Cd), respectively. Adsorption data were well fitted to the Freundlich (R2 = 0.99), Langmuir (R2 = 0.99) and pseudo-first order models (R2 = 0.98). Electrostatic attraction and surface precipitation interaction via external mass transfer between bulk liquid-solid interfaces were the potential adsorption pathways. Pb showed higher affinity than Cd in multi-metal system. Desorption efficiency was higher in acidic environment (92%) than in distilled water (44%). Moreover, regenerated magnetite samples retained good adsorption capacity for six cycles. As soils are characterized by large variability of iron minerals, these findings have important implications regarding the transport and immobilization of contaminants particularly in the management of contaminated soils.


Assuntos
Cádmio , Chumbo , Adsorção , Óxido Ferroso-Férrico , Cinética , Solo
10.
J Hazard Mater ; 366: 684-693, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30580143

RESUMO

As one of the most toxic heavy elements, humans are mainly exposed to cadmium (Cd) via daily diets and smoking. Calcite can be used as an amendment directly or precipitated in situ based on microbial-induced carbonate precipitation (MICP) technology to immobilize Cd in soil with potential release of Cd due to calcite dissolution. Therefore, we converted microbial-induced calcite to less soluble hydroxyapatite and investigated the phase and morphology evolutions of the solids, as well as the immobilized efficiency, distribution and release of Cd. The results showed that the conversion of calcite to hydroxyapatite enhanced Cd removal efficiency up to 1.67% and 33.14% compared to the MICP process and adsorption by calcite, respectively. Accordingly, the released Cd decreased up to 94.10% and 99.96%, respectively. Our findings demonstrated that the conversion of calcite to hydroxyapatite might control the environmental behavior of heavy metals like Cd and can potentially be applied for soil remediation.


Assuntos
Cádmio/metabolismo , Carbonato de Cálcio/metabolismo , Durapatita/metabolismo , Sporosarcina/metabolismo , Biodegradação Ambiental
11.
J Hazard Mater ; 306: 305-312, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26774985

RESUMO

In this study, a series of Mn substituted spinel ferrites calcinated at different temperatures were used as catalysts for the oxidation of formaldehyde (HCHO). X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and H2 temperature-programmed reduction were conducted to characterize the structure and physico-chemical properties of catalysts, which were affected by calcination in the range of 200-600°C. Results show that all the ferrites were with spinel structure, and those calcinated in the range of 300-600°C were in the phase of maghemite. The calcination changed the valence and distribution of Mn and Fe on the ferrite surface, and accordingly the reducibility of ferrites. The HCHO catalytic oxidation test showed that with the increase of calcination temperature, the activity was initially improved until 400°C, but then decreased. The variation of HCHO conversion performance was well positively correlated to the variation of reduction temperature of surface Mn(4+) species. The remarkable effect of calcination on the catalytic activity of Mn-doped spinel ferrites for HCHO oxidation was discussed in view of reaction mechanism and variations in cationic microstructure of Mn-doped ferrites.

12.
J Hazard Mater ; 189(1-2): 540-5, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21435781

RESUMO

The major objective of the present study was to investigate the role of iron and manganese on the formation of haloacetic acids (HAAs) when algae are chlorinated at different pHs. The results showed that both iron and manganese can reduce the yields of dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) on chlorinating green alga Chlorella vulgaris (C. vulgaris) at a pH range of 6.0-9.0, and the decline of DCAA and TCAA was shown to be more significant at the low pH range. At pH 6.0, DCAA and TCAA yields decreased by 44.5% and 57.3%, respectively with the addition of 0.5 mg L(-1) iron, and decreased 39.5% and 49.4%, respectively with the addition of 0.5 mg L(-1) manganese. The main reason for decreasing the yields of HAAs as shown by scanning electron microscope (SEM) is that Fe(OH)(3(am)) or MnO(2(am)) coat the algal cells, which then improves their agglomeration of algal cells which is also revealed by the laser particle size analysis (LPSA).


Assuntos
Acetatos/química , Biodegradação Ambiental , Chlorella vulgaris/metabolismo , Ferro/química , Manganês/química , Clorófitas , Halogenação , Concentração de Íons de Hidrogênio , Óxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA