Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Rep ; 20(5): 82, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38628627

RESUMO

Dihydromyricetin (DHM) is a natural flavonoid compound with multiple antitumour effects, including inhibition of proliferation, promotion of apoptosis, inhibition of invasion and migration, clearance of reactive oxygen species (ROS) and induction of autophagy. For example, DHM can effectively block the progression of the tumour cell cycle and inhibit cell proliferation. In different types of cancer cells, DHM can regulate the PI3K/Akt pathway, mTOR, and NF-κB pathway components, such as p53, and endoplasmic reticulum stress can alter the accumulation of ROS or induce autophagy to promote the apoptosis of tumour cells. In addition, when DHM is used in combination with various known chemotherapy drugs, such as paclitaxel, nedaplatin, doxorubicin, oxaliplatin and vinblastine, it can increase the sensitivity of tumour cells to DHM and increase the therapeutic effect of chemotherapy drugs. In the present review, the multiple molecular and cellular mechanisms underlying the antitumour effect of DHM, as well as its ability to increase the effects of various traditional antitumour drugs were summarized. Through the present review, it is expected by the authors to draw attention to the potential of DHM as an antitumour drug and provide valuable references for the clinical translation of DHM research and the development of related treatment strategies.

2.
Am J Clin Exp Urol ; 11(6): 578-593, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148933

RESUMO

Prostate cancer is a health-threaten disease in men worldwide, however, lacking is the reliable biomarkers for patient management. Aberrant metabolic events including glucose metabolism are involved in prostate cancer progression. To examine the involvement of glucose metabolic pathways in prostate cancer, we analyzed the expression profiles of glucose transporter family genes using multiple RNA-seq datasets. Our results showed that three SLC2A family genes (SLC2A4/5/9) were significantly downregulated in primary prostate cancers compared to their benign compartments. These down-regulated expressions were inversely correlated with their gene promoter methylation and genome abnormalities. Among these three SLC2A genes, only SLC2A4 showed a significantly reverse correlation with all clinicopathological parameters, including TNM stage, disease relapse, Gleason score, disease-specific survival, and progression-free interval. In addition, the expression levels of these three genes were strongly correlated with anti-cancer immune cell filtration in primary prostate cancers. In a group of patients with early-onset prostate cancers, SLC2A4 also showed a strong negative correlation with multiple clinicopathological parameters, such as tumor mutation burden, biochemical relapse, pre-surgical PSA levels, and Gleason score but a positive correlation with progression-free interval after surgery. In metastatic castration-resistant prostate cancers (CRPC), SLC2A9 gene expression but not SLC2A4 or SLC2A5 genes showed a significant correlation with androgen receptor (AR) activity score and neuroendocrinal (NE) activity score. Meanwhile, SLC2A2/9/13 expression was significantly elevated in CRPC tumors with neuroendocrinal features compared to those without NE features. On the other hand, SLC2A10 and SlC2A12 gene expression were significantly reduced in NEPC tumors compared to CRPC tumors. Consistently, SLC2A10/12 expression levels were significantly reduced in castrated animals carrying the LuCaP35 xenograft models. Survival outcome analysis revealed that SLC2A4 expression in primary tumors is a favorable prognostic factor and SLC2A6 is a worse prognostic factor for disease-specific survival and progression-free survival in prostate cancer patients. In conclusion, our results suggest that SLC2A4/6 expressions are strong prognostic factors for prostate cancer progression and survival. The significance of SLC2A2/9/13 over-expression during NEPC progression needs more investigation.

3.
Toxicol Appl Pharmacol ; 473: 116595, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37328118

RESUMO

BACKGROUND: Cisplatin is effective against various types of cancers. However, its clinical application is limited owing to its adverse effects, especially acute kidney injury (AKI). Dihydromyricetin (DHM), a flavonoid derived from Ampelopsis grossedentata, has varied pharmacological activities. This research aimed to determine the molecular mechanism for cisplatin-induced AKI. METHODS: A murine model of cisplatin-induced AKI (22 mg/kg, I.P.) and a HK-2 cell model of cisplatin-induced damage (30 µM) were established to evaluate the protective function of DHM. Renal dysfunction markers, renal morphology and potential signaling pathways were investigated. RESULTS: DHM decreased the levels of renal function biomarkers (blood urea nitrogen and serum creatinine), mitigated renal morphological damage, and downregulated the protein levels of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. It upregulated the expression levels of antioxidant enzymes (superoxide dismutase and catalase expression), nuclear factor-erythroid-2-related factor 2 (Nrf2) and its downstream proteins, including heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic (GCLC) and modulatory (GCLM) subunits, thus eventually reducing cisplatin-induced reactive oxygen species (ROS) production. Moreover, DHM partially inhibited the phosphorylation of the active fragments of caspase-8 and -3 and mitogen-activated protein kinase and restored glutathione peroxidase 4 expression, which attenuated renal apoptosis and ferroptosis in cisplatin-treated animals. DHM also mitigated the activation of NLRP3 inflammasome and nuclear factor (NF)-κB, attenuating the inflammatory response. In addition, it reduced cisplatin-induced HK-2 cell apoptosis and ROS production, both of which were blocked by the Nrf2 inhibitor ML385. CONCLUSIONS: DHM suppressed cisplatin-induced oxidative stress, inflammation and ferroptosis probably through regulating of Nrf2/HO-1, MAPK and NF-κB signaling pathways.


Assuntos
Injúria Renal Aguda , Ferroptose , Animais , Camundongos , Cisplatino/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Rim , NF-kappa B/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle
4.
Front Oncol ; 13: 1160548, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37256172

RESUMO

Background: Hepatoblastoma has an unsatisfactory prognosis, and traditional chemotherapy has strong side effects. Dihydromyricetin is a flavonoid extracted from a woody vine of the genus Serpentine in the family Vitaceae, with effects such as preventing alcoholic liver and reducing the incidence of liver cancer. However, the effect of DHM on hepatoblastoma and its specific pathway are still unclear. Purpose: The purpose of this study was to investigate the effects of DHM on children's hepatoblastoma and its related mechanisms. Methods: CCK-8 assays were used to measure proliferation. Apoptosis and reactive oxygen species (ROS) were analyzed by flow cytometry. Apoptotic cells were observed using Hoechst 33342 staining and fluorescence microscopy. Protein expression levels in HuH-6 and HepG2 cells were determined by western blotting. Results: We found that DHM was able to inhibit the growth and increase cellular mortality in HuH-6 and HepG2 cells. Furthermore, DHM decreased the intracellular ROS level and increased the expression of SOD1. ROS scavenger NAC promoted apoptosis, while the use of SOD1 inhibitor LCS-1 weakened the ROS scavenging effect of DHM , and to some extent reduced the killing effect of DHM on hepatoblastoma cells. Conclusion: These results suggest that regulating SOD1/ROS pathway to induce apoptosis is one of the potential mechanisms of DHM as a tumor suppressor in hepatoblastoma. Therefore, DHM may be a novel candidate for inhibiting hepatoblastoma growth and deserves further study.

5.
Biomolecules ; 11(9)2021 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-34572596

RESUMO

Progesterone-induced rapid non-genomic signaling events have been confirmed through several membrane progesterone receptors (mPR). Some mPRs were reported to correlate with cancer progression and patient prognosis. In this study, we conducted a comprehensive analysis of all progesterone receptor (PGR)-related genes in prostate cancer tissues and examined the correlations of their expression levels with disease progression and patient survival outcomes. We utilized multiple RNA-seq and cDNA microarray datasets to analyze gene expression profiles and performed logistics aggression and Kaplan-Meier survival analysis after stratifying patients based on tumor stages and Gleason scores. We also used NCBI GEO datasets to examine gene expression patterns in individual cell types of the prostate gland and to determine the androgen-induced alteration of gene expression. Spearman coefficient analysis was conducted to access the correlation of target gene expression with treatment responses and disease progression status. The classic PGR was mainly expressed in stromal cells and progestin and adipoQ receptor (PAQR) genes were the predominant genes in prostate epithelial cells. Progesterone receptor membrane component-1 (PGRMC1) was significantly higher than PGRMC2 in all prostate cell types. In prostate cancer tissues, PAQR6 expression was significantly upregulated, while all other genes were largely downregulated compared to normal prostate tissues. Although both PAQR6 upregulation and PAQR5 downregulation were significantly correlated with tumor pathological stages, only PAQR6 upregulation was associated with Gleason score, free-prostate-specific antigen (fPSA)/total-PSA (tPSA) ratio, and patient overall survival outcomes. In addition, PAQR6 upregulation and PGR/PGRMC1 downregulation were significantly associated with a quick relapse. Conversely, in neuroendocrinal prostate cancer (NEPC) tissues, PAQR6 expression was significantly lower, but PAQR7/8 expression was higher than castration-resistant prostate cancer (CRPC) tissues. PAQR8 expression was positively correlated with androgen receptor (AR) score and AR-V7 expression levels but inversely correlated with NEPC score in metastatic CRPC tumors. This study provides detailed expression profiles of membrane progesterone receptor genes in primary cancer, CRPC, and NEPC tissues. PAQR6 upregulation in primary cancer tissues is a novel prognostic biomarker for disease progression, overall, and progression-free survival in prostate cancers. PAQR8 expression in CRPC tissues is a biomarker for AR activation.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Receptores Androgênicos/metabolismo , Receptores de Progesterona/genética , Transdução de Sinais , Regulação para Cima/genética , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/patologia , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Modelos Logísticos , Masculino , Estadiamento de Neoplasias , Prognóstico , Neoplasias da Próstata/patologia , Receptores de Progesterona/metabolismo , Análise de Sobrevida
6.
Biomed Pharmacother ; 142: 111927, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34339914

RESUMO

Recent studies demonstrated that dihydromyricetin (DHM) has prominent therapeutic effects on liver injury and liver cancer. By summarizing the current preclinical in vitro and in vivo studies, the present review examines the preventive and therapeutic effects of DHM on liver disorders as well as its potential mechanisms. Briefly, in both chemical- and alcohol-induced liver injury models, DHM ameliorates hepatocyte necrosis and steatosis while promoting liver regeneration. In addition, DHM can alleviate nonalcoholic fatty liver disease (NAFLD) via regulating lipid/glucose metabolism, probably due to its anti-inflammatory or sirtuins-dependent mechanisms. Furthermore, DHM treatment inhibits cell proliferation, induces apoptosis and autophagy and regulates redox balance in liver cancer cells, thus exhibiting remarkable anti-cancer effects. The pharmacological mechanisms of DHM may be associated with its anti-inflammatory, anti-oxidative and apoptosis-regulatory benefits. With the accumulating interests in utilizing natural products to target common diseases, our work aims to improve the understanding of DHM acting as a novel drug candidate for liver diseases and to accelerate its translation from bench to bedside.


Assuntos
Flavonóis/farmacologia , Flavonóis/uso terapêutico , Hepatopatias/prevenção & controle , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/prevenção & controle , Flavonóis/farmacocinética , Humanos , Hepatopatias/metabolismo , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/prevenção & controle , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/prevenção & controle , Regeneração Hepática/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Substâncias Protetoras/farmacocinética
7.
Front Oncol ; 11: 714756, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277457

RESUMO

BACKGROUND: Hepcidin is a polypeptide hormone mainly produced by hepatocytes to modulate systemic iron balance. A drastic downregulation of the hepcidin gene was found in liver cancers. However, there is a paucity of information about the clinical significance of hepcidin gene downregulation in liver cancers. METHODS: Hepcidin expression profiles were assessed using multiple public datasets via several bioinformatics platforms. Clinical and pathological information was utilized to stratify patients for comparison. Patient survival outcomes were evaluated using the Kaplan-Meier plotter, a meta-analysis tool. Tumor immune infiltration was analyzed using the single sample gene set enrichment analysis (ssGSEA) approach on the Cancer Genome Atlas (TCGA) dataset. Hepcidin antagonist Fursultiamine was used to treat liver cancer HepG2 and Huh7 cells together with Sorafenib. RESULTS: Hepcidin gene was predominantly expressed in benign liver tissues but drastically decreased in liver cancer tissues. Hepcidin reduction in liver cancers correlated with risk factors like non-alcoholic fatty liver disease (NAFLD) and liver fibrosis, as well as cancer grade and tumor stage. Hepcidin downregulation was associated with a rapid cancer progression and worse disease-specific survival, especially in patients of the White race without alcohol consumption history. Hepcidin expression in liver cancer tissues positively correlated with the bone morphogenetic protein-6 (BPM6)/interleukin-6 (IL6) cytokines and cytotoxic immune infiltration. Blocking hepcidin action with its antagonist Fursultiamine moderately reduced Sorafenib-induced apoptotic cell death in HepG2 and Huh7 cells. CONCLUSION: Hepcidin downregulation in liver cancers correlated with liver cancer risk factors, cancer aggressiveness, cytotoxic immune cell infiltration, and patient survival outcomes. BMP6/IL6 pathway insufficiency is a potential cause of hepcidin downregulation in liver cancers.

8.
Front Oncol ; 11: 691199, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055653

RESUMO

BACKGROUND: Liver cancer is a leading cause of cancer death worldwide, and novel prognostic factor is needed for early detection and therapeutic responsiveness monitoring. The orphan nuclear receptor NR0B2 was reported to suppress liver cancer development in a mouse model, and its expression levels were reduced in liver cancer tissues and cell lines due to hypermethylation within its promoter region. However, it is not clear if NR0B2 expression is associated with cancer survival or disease progression and how NR0B2 gene expression is regulated at the molecular level. METHODS: Multiple cancer databases were utilized to explore NR0B2 gene expression profiles crossing a variety of human cancers, including liver cancers, on several publicly assessable bioinformatics platforms. NR0B2 gene expression with or without kinase inhibitor treatment was analyzed using the qPCR technique, and NR0B2 protein expression was assessed in western blot assays. Two human hepatocellular carcinoma cell lines HepG2 and Huh7, were used in these experiments. NR0B2 gene activation was evaluated using NR0B2 promoter-driven luciferase reporter assays. RESULTS: NR0B2 gene is predominantly expressed in liver tissue crossing human major organs or tissues, but it is significantly downregulated in liver cancers. NR0B2 expression is mostly downregulated in most common cancers but also upregulated in a few intestinal cancers. NR0B2 gene expression significantly correlated with patient overall survival status in multiple human malignancies, including lung, kidney, breast, urinary bladder, thyroid, colon, and head-neck cancers, as well as liposarcoma and B-cell lymphoma. In liver cancer patients, higher NR0B2 expression is associated with favorite relapse-free and progression-free survival, especially in Asian male patients with viral infection history. In addition, NR0B2 expression negatively correlated with immune infiltration and PIK3CA and PIK3CG gene expression in liver cancer tissues. In HepG2 and Huh7 cells, NR0B2 expression at the transcription level was drastically reduced after MAPK inhibition but was significantly enhanced after PI3K inhibition. CONCLUSION: NR0B2 gene expression is altered mainly in most human malignancies and significantly reduced in liver cancers. NR0B2 is a prognosis factor for patient survival in liver cancers. MAPK and PI3K oppositely modulate NR0B2 expression, and NR0B2 gene upregulation might serve as a therapeutic responsiveness factor in anti-PI3K therapy for liver cancer.

9.
Front Oncol ; 11: 827344, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127538

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) was sex-hormone responsive, and clinical trials using progesterone significantly reduced the incidence of distal metastasis after radical nephrectomy. Recently membrane-bound progesterone receptors (mPRs) were discovered to mediate the non-genomic effect of progesterone. Aberrant expressions of these mPRs were reported in human breast, ovarian, urinary bladder, brain, uterine, and prostate cancers. However, their expression profiles in RCC are yet to be assessed. METHODS: Multiple datasets from RNA sequencing (RNA-seq), cDNA microarray, and proteomic analysis were used to compare gene expression between cancerous and normal kidney tissues. Immunohistochemistry was conducted to examine protein expression in kidney tissues. Promoter methylation levels were assessed for correlation analysis with gene expression. RESULTS: Of the seven membrane-bound progesterone receptor genes, the progestin and adipoQ receptor-5 (PAQR5) gene is predominantly expressed in normal kidney tissue but was significantly downregulated in RCC tissues. PAQR5 downregulation correlated with tumor stage, cancer grade, lymph node invasion, and distal metastasis only in clear cell RCC (ccRCC) tissues. PAQR5 downregulation was associated with an increased promoter DNA methylation and a poor survival outcome in ccRCC patients. In addition, PAQR5 expression inversely correlated with transforming growth factor beta-1 (TGFB1) expression, and TGFß1 treatment significantly reduced PAQR5 gene expression. CONCLUSION: PAQR5 is a novel prognostic biomarker in ccRCC and is negatively regulated by the TGFß1 pathway.

10.
BMC Cancer ; 19(1): 645, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31262254

RESUMO

BACKGROUND: Ovarian cancer (OC) is the second most frequent gynecological cancer and is associated with a poor prognosis because OC progression is often asymptoma-tic and is detected at a late stage. There remains an urgent need for novel targeted therapies to improve clinical outcomes in ovarian cancer. As a nitric oxide prodrug, JS-K is reported highly cytotoxic to human cancer cells such as acute myeloid leukemia, multiple myeloma and breast cancer. This study is aim to investigate the influence of JS-K on proliferation and apoptosis in ovarian cancer cells and explored possible autophagy-related mechanisms, which will contribute to future ovarian cancer therapy and supply theory support that JS-K holds great promise as a novel therapeutic agent against ovarian cancer. METHODS: The cytotoxicity, extracellular ROS/RNS activity and apoptotic effect of JS-K and indicated inhibitors on ovarian cancer cells in vitro were evaluated by MTT assay, extracellular ROS/RNS assay, caspases activities assay and western blot. Further autophagy effect of JS-K and indicated inhibitors were examined by MTT assay, cell transfection, immunofluorescence analysis, transmission electron microscopy (TEM) analysis and western blot on ovarian cancer cells in vitro. In vivo, the BALB/c-nude female mice with SKOV3 ovarian cancer cells xenograft were used to examine the efficacy of JS-K treatment on tumor growth. PCNA and p62 proteins were analyzed by immunohistochemistry. RESULTS: In vitro, JS-K inhibited the proliferation of ovarian cancer cells, induced apoptosis and cell nucleus shrinkage, enhanced the enzymatic activity of caspase-3/7/8/9, and significantly increased the production of ROS/RNS in ovarian cancer A2780 and SKOV3 cells, these effects were attenuated by inhibition of NAC. In addition, JS-K induced autophagy-related proteins and autophagosomes changes in ovarian cancer A2780 and SKOV3 cells. In vivo, JS-K inhibited tumor growth, decreased p62 protein expression and increased the expression levels of PCNA in xenograft models which were established using SKOV3 ovarian cancer cells. CONCLUSION: Taken together, we demonstrated that ROS/RNS stress-mediated apoptosis and autophagy are mechanisms by which SKOV3 cells undergo cell death after treatment with JS-K in vitro. Moreover, JS-K inhibited SKOV3 tumor growth in vivo. An alternative therapeutic approach for triggering cell death in cancer cells could constitute a useful multimodal therapies for treating ovarian cancer, which is known for its resistance to apoptosis-inducing drugs.


Assuntos
Autofagia/efeitos dos fármacos , Compostos Azo/farmacologia , Doadores de Óxido Nítrico/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Piperazinas/farmacologia , Animais , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Espécies Reativas de Oxigênio , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Free Radic Biol Med ; 139: 70-79, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31103463

RESUMO

The natural compound Alternol was shown to induce profound oxidative stress and apoptotic cell death preferentially in cancer cells. In this study, a comprehensive investigation was conducted to understand the mechanism for Alternol-induced ROS accumulation responsible for apoptotic cell death. Our data revealed that Alternol treatment moderately increased mitochondrial superoxide formation rate, but it was significantly lower than the total ROS positive cell population. Pre-treatment with mitochondria-specific anti-oxidant MitoQ, NOX or NOS specific inhibitors had no protective effect on Alternol-induced ROS accumulation and cell death. However, XDH/XO inhibition by specific small chemical inhibitors or gene silencing reduced total ROS levels and protected cells from apoptosis induced by Alternol. Further analysis revealed that Alternol treatment significantly enhanced XDH oxidative activity and induced a strong protein oxidation-related damage in malignant but not benign cells. Interestingly, benign cells exerted a strong spike in anti-oxidant SOD and catalase activities compared to malignant cells after Alternol treatment. Cell-based protein-ligand engagement and in-silicon docking analysis showed that Alternol interacts with XDH protein on the catalytic domain with two amino acid residues away from its substrate binding sites. Taken together, our data demonstrate that Alternol treatment enhances XDH oxidative activity, leading to ROS-dependent apoptotic cell death.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Superóxidos/antagonistas & inibidores , Xantina Oxidase/genética , Antioxidantes/farmacologia , Apoptose/genética , Domínio Catalítico , Linhagem Celular , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Simulação de Acoplamento Molecular , Compostos Organofosforados/farmacologia , Estresse Oxidativo , Próstata/metabolismo , Próstata/patologia , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Especificidade por Substrato , Superóxidos/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Xantina Desidrogenase/genética , Xantina Desidrogenase/metabolismo , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/metabolismo
12.
Oncol Rep ; 41(6): 3475-3487, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31002373

RESUMO

Lung cancer is one of the most common malignancies worldwide, with high mortality and morbidity rates. O2­â€‹(2,4­â€‹dinitrophenyl)­1­â€‹[(4­ethoxycarbonyl)piperazin­1­yl]diazen­1­ium­1,2­diolate (JS­K) is a potent anticancer agent that acts against a subset of human non­small cell lung cancer (NSCLC) cell lines; however, the underlying mechanisms of JS­K in NSCLC remain unclear. The present study aimed to evaluate the anticancer effect of JS­K and investigate its underlying mechanisms in A549 and H460 cells. In the present study, A549 and H460 cells were treated with JS­K, and then evaluated by cell viability assay, flow cytometry and western blot analysis. JS­K markedly induced cell cycle arrest at the G2/M phase in a concentration and time­dependent manner in both cell lines. This was associated with increased expression levels of p53, and the cell cycle inhibitors p21WAF1/CIP1 and p27KIP1, which, in turn, inhibited the expression of Cdc2, cyclin B1 and cyclin­dependent kinase 2. In addition, JS­K­induced inhibition of proliferation was revealed to be partially modulated by the upregulation of p53 and p21WAF1, the ratio of Bax/Bcl­2, and the activation of both the intrinsic and extrinsic apoptotic pathways in A549 and H460 cells. These results demonstrated that JS­K could trigger cell cycle arrest at the G2/M phase and apoptosis in A549 and H460 cells, which was likely mediated via the p53/p21WAF1/CIP1 and p27KIP1 pathways. Overall, the results indicated that JS­K may be used as an anticancer agent for the treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Proteína Supressora de Tumor p53/genética , Células A549 , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Piperazina/análogos & derivados , Piperazina/farmacologia
13.
EMBO J ; 38(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30723117

RESUMO

In light of the increasing number of identified cancer-driven gain-of-function (GOF) mutants of p53, it is important to define a common mechanism to systematically target several mutants, rather than developing strategies tailored to inhibit each mutant individually. Here, using RNA immunoprecipitation-sequencing (RIP-seq), we identified the Polycomb-group histone methyltransferase EZH2 as a p53 mRNA-binding protein. EZH2 bound to an internal ribosome entry site (IRES) in the 5'UTR of p53 mRNA and enhanced p53 protein translation in a methyltransferase-independent manner. EZH2 augmented p53 GOF mutant-mediated cancer growth and metastasis by increasing protein levels of mutant p53. EZH2 overexpression was associated with worsened outcome selectively in patients with p53-mutated cancer. Depletion of EZH2 by antisense oligonucleotides inhibited p53 GOF mutant-mediated cancer growth. Our findings reveal a non-methyltransferase function of EZH2 that controls protein translation of p53 GOF mutants, inhibition of which causes synthetic lethality in cancer cells expressing p53 GOF mutants.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Mutação com Ganho de Função , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/patologia , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Humanos , Sítios Internos de Entrada Ribossomal , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Estabilidade Proteica , RNA Mensageiro/genética , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Mol Cell ; 73(1): 22-35.e6, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30527665

RESUMO

Aberrant expression of programmed death ligand-1 (PD-L1) in tumor cells promotes cancer progression by suppressing cancer immunity. The retinoblastoma protein RB is a tumor suppressor known to regulate the cell cycle, DNA damage response, and differentiation. Here, we demonstrate that RB interacts with nuclear factor κB (NF-κB) protein p65 and that their interaction is primarily dependent on CDK4/6-mediated serine-249/threonine-252 (S249/T252) phosphorylation of RB. RNA-seq analysis shows a subset of NF-κB pathway genes including PD-L1 are selectively upregulated by RB knockdown or CDK4/6 inhibitor. S249/T252-phosphorylated RB inversely correlates with PD-L1 expression in patient samples. Expression of a RB-derived S249/T252 phosphorylation-mimetic peptide suppresses radiotherapy-induced upregulation of PD-L1 and augments therapeutic efficacy of radiation in vivo. Our findings reveal a previously unrecognized tumor suppressor function of hyperphosphorylated RB in suppressing NF-κB activity and PD-L1 expression and suggest that the RB-NF-κB axis can be exploited to overcome cancer immune evasion triggered by conventional or targeted therapies.


Assuntos
Antígeno B7-H1/metabolismo , Neoplasias da Próstata/metabolismo , Proteína do Retinoblastoma/metabolismo , Fator de Transcrição RelA/metabolismo , Evasão Tumoral , Animais , Antineoplásicos Imunológicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Quimiorradioterapia/métodos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Células PC-3 , Fosforilação , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/terapia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Tolerância a Radiação , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/imunologia , Transdução de Sinais , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Oncol Rep ; 40(6): 3812-3820, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30272369

RESUMO

JIB­04 is a structurally unique small molecule, known to exhibit anticancer activity and to inhibit the growth of human lung cancer and prostate cancer cell lines. However, the anticancer effect of JIB­04 against human hepatic carcinoma, and its underlying mechanisms, are still unclear. In the present study, MHCC97H and HepG2 cells were employed to investigate the anticancer effects of JIB­04 on cell viability and apoptosis. Annexin V/PI staining, a CCK­8 assay and western blot analysis demonstrated that JIB­04 induced apoptosis in MHCC97H and HepG2 cells, which was evidenced by the expression of proapoptotic and apoptotic proteins including p53, Bak, Bax, caspase­3 and caspase­9. Subsequently, the expression trends of Bcl­2 and p53 were reversed after co­treatment with pifithrin­α (PFT­α, a p53 inhibitor). The results revealed that JIB­04 suppressed the cell viability of MHCC97H and HepG2 cells in a concentration­dependent manner. Meanwhile, it was also demonstrated that JIB­04 effectively triggered MHCC97H and HepG2 cell apoptosis by downregulating Bcl­2/Bax expression, and upregulating proapoptotic and apoptotic protein expression via the p53/Bcl2/caspase signaling pathway. JIB­04 had effects on the inhibition of cell viability and the induction of apoptosis in MHCC97H and HepG2 cells. The underlying mechanism of action of JIB­04 was associated with the p53/Bcl­2/caspase signaling pathway. Our findings provide a foundation for understanding the anticancer effect of JIB­04 on MHCC97H and HepG2 cells, and suggested that JIB­04 may be a promising therapeutic agent in human liver cancer.


Assuntos
Aminopiridinas/farmacologia , Caspases/metabolismo , Hidrazonas/farmacologia , Neoplasias Pulmonares/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Neoplasias da Próstata/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
16.
EMBO Mol Med ; 10(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29523594

RESUMO

AKT-mTOR and androgen receptor (AR) signaling pathways are aberrantly activated in prostate cancer due to frequent PTEN deletions or SPOP mutations. A clinical barrier is that targeting one of them often activates the other. Here, we demonstrate that HDAC3 augments AKT phosphorylation in prostate cancer cells and its overexpression correlates with AKT phosphorylation in patient samples. HDAC3 facilitates lysine-63-chain polyubiquitination and phosphorylation of AKT, and this effect is mediated by AKT deacetylation at lysine 14 and 20 residues and HDAC3 interaction with the scaffold protein APPL1. Conditional homozygous deletion of Hdac3 suppresses prostate tumorigenesis and progression by concomitant blockade of AKT and AR signaling in the Pten knockout mouse model. Pharmacological inhibition of HDAC3 using a selective HDAC3 inhibitor RGFP966 inhibits growth of both PTEN-deficient and SPOP-mutated prostate cancer cells in culture, patient-derived organoids and xenografts in mice. Our study identifies HDAC3 as a common upstream activator of AKT and AR signaling and reveals that dual inhibition of AKT and AR pathways is achievable by single-agent targeting of HDAC3 in prostate cancer.


Assuntos
Proteínas Nucleares/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Androgênicos/metabolismo , Proteínas Repressoras/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Acrilamidas/farmacologia , Animais , Western Blotting , Genótipo , Células HEK293 , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Imunoprecipitação , Masculino , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , PTEN Fosfo-Hidrolase/genética , Fenilenodiaminas/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Receptores Androgênicos/genética , Proteínas Repressoras/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Complexos Ubiquitina-Proteína Ligase
17.
Nucleic Acids Res ; 46(4): 1895-1911, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29309643

RESUMO

Androgen receptor (AR) splice variants (ARVs) are implicated in development of castration-resistant prostate cancer (CRPC). Upregulation of ARVs often correlates with persistent AR activity after androgen deprivation therapy (ADT). However, the genomic and epigenomic characteristics of ARV-dependent cistrome and the disease relevance of ARV-mediated transcriptome remain elusive. Through integrated chromatin immunoprecipitation coupled sequencing (ChIP-seq) and RNA sequencing (RNA-seq) analysis, we identified ARV-preferential-binding sites (ARV-PBS) and a set of genes preferentially transactivated by ARVs in CRPC cells. ARVs preferentially bind to enhancers located in nucleosome-depleted regions harboring the full AR-response element (AREfull), while full-length AR (ARFL)-PBS are enhancers resided in closed chromatin regions containing the composite FOXA1-nnnn-AREhalf motif. ARV-PBS exclusively overlapped with AR binding sites in castration-resistant (CR) tumors in patients and ARV-preferentially activated genes were up-regulated in abiraterone-resistant patient specimens. Expression of ARV-PBS target genes, such as oncogene RAP2A and cell cycle gene E2F7, were significantly associated with castration resistance, poor survival and tumor progression. We uncover distinct genomic and epigenomic features of ARV-PBS, highlighting that ARVs are useful tools to depict AR-regulated oncogenic genome and epigenome landscapes in prostate cancer. Our data also suggest that the ARV-preferentially activated transcriptional program could be targeted for effective treatment of CRPC.


Assuntos
Androstenos/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Cromatina/metabolismo , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Genômica , Humanos , Masculino , Camundongos SCID , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Isoformas de Proteínas/metabolismo , Splicing de RNA , Receptores Androgênicos/genética , Proteínas rap de Ligação ao GTP/fisiologia
18.
Clin Cancer Res ; 24(4): 834-846, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29167276

RESUMO

Purpose: Intratumoral androgen synthesis (IAS) is a key mechanism promoting androgen receptor (AR) reactivation and antiandrogen resistance in castration-resistant prostate cancer (CRPC). However, signaling pathways driving aberrant IAS remain poorly understood.Experimental Design: The effect of components of the AKT-RUNX2-osteocalcin (OCN)-GPRC6A-CREB signaling axis on expression of steroidogenesis genes CYP11A1 and CYP17A1 and testosterone level were examined in PTEN-null human prostate cancer cell lines. Pten knockout mice were used to examine the effect of Runx2 heterozygous deletion or abiraterone acetate (ABA), a prodrug of the CYP17A1 inhibitor abiraterone on Cyp11a1 and Cyp17a1 expression, testosterone level and tumor microenvironment (TME) remodeling in vivoResults: We uncovered that activation of the AKT-RUNX2-OCN-GPRC6A-CREB signaling axis induced expression of CYP11A1 and CYP17A1 and testosterone production in PTEN-null prostate cancer cell lines in culture. Deletion of Runx2 in Pten homozygous knockout prostate tumors decreased Cyp11a1 and Cyp17a1 expression, testosterone level, and tumor growth in castrated mice. ABA treatment also inhibited testosterone synthesis and alleviated Pten loss-induced tumorigenesis in vivoPten deletion induced TME remodeling, but Runx2 heterozygous deletion or ABA treatment reversed the effect of Pten loss by decreasing expression of the collagenase Mmp9.Conclusions: Abnormal RUNX2 activation plays a pivotal role in PTEN loss-induced IAS and TME remodeling, suggesting that the identified signaling cascade represents a viable target for effective treatment of PTEN-null prostate cancer, including CRPC. Clin Cancer Res; 24(4); 834-46. ©2017 AACR.


Assuntos
Acetato de Abiraterona/farmacologia , Androgênios/biossíntese , Subunidade alfa 1 de Fator de Ligação ao Core/genética , PTEN Fosfo-Hidrolase/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Subunidade alfa 1 de Fator de Ligação ao Core/deficiência , Inibidores das Enzimas do Citocromo P-450/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos Knockout , PTEN Fosfo-Hidrolase/deficiência , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Esteroide 17-alfa-Hidroxilase/genética , Esteroide 17-alfa-Hidroxilase/metabolismo , Testosterona/metabolismo , Microambiente Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Int J Oncol ; 51(4): 1135-1145, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28902357

RESUMO

Invasion and metastasis are the primary causes of mortality from hepatocellular carcinoma (HCC). Effective inhibition against participants in the tumourigenesis and metastasis process is critical for treatment of HCC. Wnt3a is involved in the development and metastasis of many malignant tumours. However, the specific mechanisms of Wnt3a-mediated cell proliferation, invasion and metastasis in HCC remain unclear. In this study, we found that Wnt3a and its target gene c­Myc showed higher expression in tumour tissues than normal liver tissues in HCC patients; 71.8% of the cases studied had high Wnt3a and c­Myc expression levels (n=32); Wnt3a expression positively correlated with its target genes MMP­7 and c­Myc. Intriguingly, the expression of Wnt3a, MMP­7 and c­Myc is significantly correlated with Notch3 and Hes1 expression. In vitro experiments showed that Wnt3a was highly expressed in MHcc97H and SK­Hep­1 cells. Therefore, Wnt3a expression was silenced with siRNA, and then, MTT, flow cytometry, wound healing and Transwell assays were performed to analyse cell proliferation, cycle, migration and invasion. The results demonstrated that downregulation of Wnt3a expression inhibited cell viability and induced G0/G1 cell cycle arrest via decreased expression of cyclin D1 and c­Myc and increased expression of p21 and p27. In addition, deletion of Wnt3a significantly inhibited migration and invasion by downregulating MMP­2/-7/-9 expression via the MAPK (p38, ERK1/2 and JNK) pathway. In conclusion, our data show that Wnt3a is involved in HCC development. Wnt3a may be an effective target for treatment of HCC.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Regulação para Cima , Proteína Wnt3A/genética , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Ciclina D1/genética , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Sistema de Sinalização das MAP Quinases , Metástase Neoplásica , Proteínas Proto-Oncogênicas c-myc/genética , Via de Sinalização Wnt
20.
Protein Pept Lett ; 24(5): 406-412, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28245756

RESUMO

It was explored that CYP1 family of cytochromes P450 were over-expressed in several types of cancer. Our study aimed to characterize anti-proliferative activity and metabolism of the natural flavonoid diosmetin in the human hepatoma cell HepG2, expressing CYP1 family. Diosinduced cell apoptosis could be reversed due to p53 blockade and the cellular P53 and CYP1A1/CYP1A2 proteins levels were examined. P53 and CYP1A1/CYP1A2 proteins were upregulated by Dios; when PFT-α was added into cells, the P53 levels were down-regulated accompanied with up-regulated CYP1A1/CYP1A2. Meanwhile, when cells were co-treated with Dios and PFT-α, P53 was down-regulated and CYP1A1/CYP1A2 up-regulated controlled with that of Dios treated cells. The data reveal the new evidence that cytochrome P450 CYP1A regulation by P53 enzyme plays an important role in Diosmetin anti-cancer activity of HepG2 cells.


Assuntos
Apoptose/efeitos dos fármacos , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Flavonoides/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Benzotiazóis/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Humanos , Transdução de Sinais/efeitos dos fármacos , Tolueno/análogos & derivados , Tolueno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA