Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 21(1): 586, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658364

RESUMO

BACKGROUND: As the most lethal gynecologic cancer, ovarian cancer (OV) holds the potential of being immunotherapy-responsive. However, only modest therapeutic effects have been achieved by immunotherapies such as immune checkpoint blockade. This study aims to propose a generalized stroma-immune prognostic signature (SIPS) to identify OV patients who may benefit from immunotherapy. METHODS: The 2097 OV patients included in the study were significant with high-grade serous ovarian cancer in the III/IV stage. The 470 immune-related signatures were collected and analyzed by the Cox regression and Lasso algorithm to generalize a credible SIPS. Correlations between the SIPS signature and tumor microenvironment were further analyzed. The critical immunosuppressive role of stroma indicated by the SIPS was further validated by targeting the major suppressive stroma component (CAFs, Cancer-associated fibroblasts) in vitro and in vivo. With four machine-learning methods predicting tumor immune subtypes, the stroma-immune signature was upgraded to a 23-gene signature. RESULTS: The SIPS effectively discriminated the high-risk individuals in the training and validating cohorts, where the high SIPS succeeded in predicting worse survival in several immunotherapy cohorts. The SIPS signature was positively correlated with stroma components, especially CAFs and immunosuppressive cells in the tumor microenvironment, indicating the critical suppressive stroma-immune network. The combination of CAFs' marker PDGFRB inhibitors and frontline PARP inhibitors substantially inhibited tumor growth and promoted the survival of OV-bearing mice. The stroma-immune signature was upgraded to a 23-gene signature to improve clinical utility. Several drug types that suppress stroma-immune signatures, such as EGFR inhibitors, could be candidates for potential immunotherapeutic combinations in ovarian cancer. CONCLUSIONS: The stroma-immune signature could efficiently predict the immunotherapeutic sensitivity of OV patients. Immunotherapy and auxiliary drugs targeting stroma could enhance immunotherapeutic efficacy in ovarian cancer.


Assuntos
Síndrome de DiGeorge , Neoplasias Ovarianas , Feminino , Animais , Camundongos , Humanos , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Prognóstico , Neoplasias Ovarianas/tratamento farmacológico , Imunossupressores , Imunoterapia , Microambiente Tumoral
2.
Front Oncol ; 13: 970187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733308

RESUMO

Background: Protein-energy malnutrition (PEM) has been recognized as a poor prognostic factor in many clinical issues. However, nationwide population studies concerning the impact of PEM on outcomes after major cancer surgery (MCS) are lacking. We aimed to evaluate the postoperative outcomes associated with PEM following MCS. Methods: By using the Nationwide Inpatient Sample database, data of patients undergoing MCS including colectomy, cystectomy, esophagectomy, gastrectomy, hysterectomy, lung resection, pancreatectomy, or prostatectomy were analyzed retrospectively from 2009 to 2015, resulting in a weighted estimate of 1,335,681 patients. The prevalence trend of PEM, as well as mortality and major complications after MCS were calculated. Multivariable regression analysis was applied to estimate the impact of PEM on postoperative outcomes after MCS. Results: PEM showed an estimated annual percentage increase of 7.17% (95% confidence interval (CI): 4-10.44%) from 2009 to 2015, which contrasts with a 4.52% (95% CI: -6.58-2.41%) and 1.21% (95% CI: -1.85-0.56%) annual decrease in mortality and major complications in patients with PEM after MCS. PEM was associated with increased risk of mortality (odds ratio (OR)=2.26; 95% CI: 2.08-2.44; P < 0.0001), major complications (OR=2.46; 95% CI: 2.36-2.56; P < 0.0001), higher total cost ($35814 [$22292, $59579] vs. $16825 [$11393, $24164], P < 0.0001), and longer length of stay (14 [9-21] days vs. 4 [2-7] days, P < 0.0001), especially in patients underwent prostatectomy, hysterectomy and lung resection. Conclusions: PEM was associated with increased worse outcomes after major cancer surgery. Early identification and timely medical treatment of PEM for patients with cancer are crucial for improving postoperative outcomes.

3.
Biomed Res Int ; 2022: 3191474, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147630

RESUMO

Background: The mechanistic aspects of the involvement of long noncoding RNAs (lncRNAs) in NETosis, the process of neutrophil extracellular trap (NET) formation in head and neck squamous cell carcinoma (HNSCC), lack comprehensive elucidation. The involvement of these molecules in the immune microenvironment and plausible HNSCC prognosis remain to see the light of the day. The plausible functioning of NETosis-related lncRNAs with their plausible prognostic impact in HNSCC was probed in this work. Methods: The scrutiny of lncRNAs linked to NETosis entailed the probing of twenty-four genes associated with the process employing Pearson's correlation analysis on HNSCC patients' RNA sequencing data from The Cancer Genome Atlas (TCGA) database. The application of univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses yielded a NETosis-related lncRNA signature that was subjected to probing for its suitability in prognosis employing survival and nomogram analyses. Results: The NETosis-related lncRNA signature inclusive of five lncRNAs facilitated patients to be segregated as high-risk and low-risk groups with the former documenting a poor prognosis. Regression unearthed that the risk score was an independent factor for prognosis. The receiver operating characteristic (ROC) or receiver operating characteristic curve analysis documented a one-year area under time-dependent ROC curve (AUC) value of 0.711 that is corroborative of the accuracy of this signature. Additional probing documented an evident enriching of immune-linked pathways in the low-risk patients, while the high-risk patients documented an immunologically "cold" profile as per the infiltration of immune cells. We verified lncRNA expression from our NETosis-related lncRNA signature in vitro, which reflects the reliability of our model to a certain extent. Moreover, we also verified the function of the lncRNA. We found that LINC00426 contributes to the innate immune cGAS-STING signaling pathway, which explain to some extent the role of our prognostic model in predicting "hot" and "cold" tumors. Conclusions: The plausible prognostic relevance of the NETosis-related lncRNA signature (with five lncRNAs) emerges that is suggestive of its promise in targeting HNSCC.


Assuntos
Armadilhas Extracelulares , Neoplasias de Cabeça e Pescoço , RNA Longo não Codificante , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias de Cabeça e Pescoço/genética , Humanos , Nucleotidiltransferases , Prognóstico , RNA Longo não Codificante/genética , Reprodutibilidade dos Testes , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Microambiente Tumoral/genética
4.
Nat Cell Biol ; 24(1): 88-98, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35027735

RESUMO

The accumulation of lipid peroxides is recognized as a determinant of the occurrence of ferroptosis. However, the sensors and amplifying process of lipid peroxidation linked to ferroptosis remain obscure. Here we identify PKCßII as a critical contributor of ferroptosis through independent genome-wide CRISPR-Cas9 and kinase inhibitor library screening. Our results show that PKCßII senses the initial lipid peroxides and amplifies lipid peroxidation linked to ferroptosis through phosphorylation and activation of ACSL4. Lipidomics analysis shows that activated ACSL4 catalyses polyunsaturated fatty acid-containing lipid biosynthesis and promotes the accumulation of lipid peroxidation products, leading to ferroptosis. Attenuation of the PKCßII-ACSL4 pathway effectively blocks ferroptosis in vitro and impairs ferroptosis-associated cancer immunotherapy in vivo. Our results identify PKCßII as a sensor of lipid peroxidation, and the lipid peroxidation-PKCßII-ACSL4 positive-feedback axis may provide potential targets for ferroptosis-associated disease treatment.


Assuntos
Coenzima A Ligases/metabolismo , Ferroptose/fisiologia , Peroxidação de Lipídeos/fisiologia , Proteína Quinase C beta/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Humanos , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Fosforilação , Proteína Quinase C beta/genética
5.
Front Oncol ; 11: 764076, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746006

RESUMO

BACKGROUND: Albumin-to-alkaline phosphatase ratio (AAPR) has been reported as a novel prognostic predictor for numerous solid tumors. We aimed to assess the prognostic role of preoperative AAPR in surgically resectable esophageal squamous cell carcinoma (ESCC) by a propensity score matching (PSM) analysis with predictive nomograms. METHODS: Our study was conducted in a single-center prospective database between June 2009 and December 2012. Kaplan-Meier analysis was used to distinguish the difference in survival outcomes between patients stratified by an AAPR threshold. Multivariable Cox proportional hazards regression model was finally generated to specify independent prognostic markers for the entire and PSM cohorts. RESULTS: A total of 497 patients with ESCC were included in this study. An AAPR of 0.50 was determined as the optimal cutoff point for prognostic outcome stratification. Patients with AAPR<0.50 had significantly worse overall survival (OS), and progression-free survival (PFS) compared to those with AAPR≥0.50 (Log-rank P<0.001). This significant difference remained stable in the PSM analysis. Multivariable analyses based on the entire and PSM cohorts consistently showed that AAPR<0.50 might be one of the most predominant prognostic factors resulting in unfavorable OS and PFS of ESCC patients undergoing esophagectomy (P<0.001). The nomograms consisting of AAPR and other independent prognostic factors further demonstrated a plausible predictive accuracy of postoperative OS and PFS. CONCLUSION: AAPR can be considered as a simple, convenient and noninvasive biomarker with a significant prognostic effect in surgically resected ESCC.

6.
Front Physiol ; 12: 733650, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690806

RESUMO

Chronic obstructive pulmonary disease (COPD), primarily attributed to cigarette smoke (CS), is characterized by multiple pathophysiological changes, including oxidative stress and inflammation. Stromal interaction molecule 1 (STIM1) is a Ca2+ sensor that regulates Ca2+ entry in different types of cells. The present study aimed to explore the relationship between CS-induced oxidative stress and inflammation, as well as the functional role of STIM1 thereinto. Our results showed that the reactive oxygen species (ROS)/STIM1/Ca2+ axis played a critical role in CS-induced secretion of interleukin (IL)-8 in human alveolar macrophages. Specifically, smokers with COPD (SC) showed higher levels of ROS in the lung tissues compared with healthy non-smokers (HN). STIM1 was upregulated in the lung tissues of COPD patients. The expression of STIM1 was positively associated with ROS levels and negatively correlated with pulmonary function. The expression of STIM1 was also increased in the bronchoalveolar lavage fluid (BALF) macrophages of COPD patients and PMA-differentiated THP-1 macrophages stimulated by cigarette smoke extract (CSE). Additionally, CSE-induced upregulation of STIM1 in PMA-differentiated THP-1 macrophages was inhibited by pretreatment with N-acetylcysteine (NAC), a ROS scavenger. Transfection with small interfering RNA (siRNA) targeting STIM1 and pretreatment with NAC alleviated CSE-induced increase in intracellular Ca2+ levels and IL-8 expression. Furthermore, pretreatment with SKF-96365 and 2-APB, the inhibitors of Ca2+ influx, suppressed CSE-induced secretion of IL-8. In conclusion, our study demonstrates that CSE-induced ROS production may increase the expression of STIM1 in macrophages, which further promotes the release of IL-8 by regulating Ca2+ entry. These data suggest that STIM1 may play a crucial role in CSE-induced ROS production and inflammation, and participate in the pathogenesis of COPD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA