RESUMO
Phytophthora species are the most destructive plant pathogens worldwide and the main threat to agricultural and natural ecosystems; however, their pathogenic mechanism remains largely unknown. Here, we show that Avh113 effector is required for the virulence of Phytophthora sojae and is important for development of Phytophthora root and stem rot (PRSR) in soybean (Glycine max). Ectopic expression of PsAvh113 enhanced viral and Phytophthora infection in Nicotiana benthamiana. PsAvh113 directly associated with the soybean transcription factor GmDPB, inducing its degradation by the 26S proteasome. The internal repeat 2 (IR2) motif of PsAvh113 was important for its virulence and interaction with GmDPB, while silencing and overexpression of GmDPB in soybean hairy roots altered the resistance to P. sojae. Upon binding to GmDPB, PsAvh113 decreased the transcription of the downstream gene GmCAT1, which acts as a positive regulator of plant immunity. Furthermore, we revealed that PsAvh113 suppressed the GmCAT1-induced cell death by associating with GmDPB, thereby enhancing plant susceptibility to Phytophthora. Together, our findings reveal a vital role of PsAvh113 in inducing PRSR in soybean and offer a novel insight into the interplay between defence and counter-defence during the P. sojae infection of soybean.
Assuntos
Phytophthora , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Catalase/genética , Catalase/metabolismo , Glycine max/metabolismo , Resistência à Doença/genética , Ecossistema , Regulação da Expressão Gênica de Plantas/genética , Doenças das Plantas/genéticaRESUMO
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), poses a tremendous threat to the production of wheat worldwide. The molecular mechanisms of Pst effectors that regulate wheat immunity are poorly understood. In this study, we identified an effector Pst18363 from Pst that suppresses plant cell death in Nicotiana benthamiana and in wheat. Knocking down Pst18363 expression by virus-mediated host-induced gene silencing significantly decreased the number of rust pustules, indicating that Pst18363 functions as an important pathogenicity factor in Pst. Pst18363 was proven to interact with wheat Nudix hydrolase 23 TaNUDX23. In wheat, silencing of TaNUDX23 by virus-induced gene silencing increased reactive oxygen species (ROS) accumulation induced by the avirulent Pst race CYR23, whereas overexpression of TaNUDX23 suppressed ROS accumulation induced by flg22 in Arabidopsis. In addition, TaNUDX23 suppressed Pst candidate effector Pst322-trigged cell death by decreasing ROS accumulation in N. benthamiana. Knocking down of TaNUDX23 expression attenuated Pst infection, indicating that TaNUDX23 is a negative regulator of defence. In N. benthamiana, Pst18363 stabilises TaNUDX23. Overall, our data suggest that Pst18363 stabilises TaNUDX23, which suppresses ROS accumulation to facilitate Pst infection.
Assuntos
Basidiomycota/metabolismo , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Triticum/microbiologia , Basidiomycota/patogenicidade , Morte Celular , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia , Imunidade Vegetal , Proteínas de Plantas/genética , Ligação Proteica , Estabilidade Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Nicotiana/citologia , Triticum/citologia , Triticum/genética , Triticum/imunologia , Regulação para Cima/genéticaRESUMO
Rust fungi are devastating plant pathogens and cause a large economic impact on wheat production worldwide. To overcome this rapid loss of resistance in varieties, we generated stable transgenic wheat plants expressing short interfering RNAs (siRNAs) targeting potentially vital genes of Puccinia striiformis f. sp. tritici (Pst). Protein kinase A (PKA) has been proved to play important roles in regulating the virulence of phytopathogenic fungi. PsCPK1, a PKA catalytic subunit gene from Pst, is highly induced at the early infection stage of Pst. The instantaneous silencing of PsCPK1 by barley stripe mosaic virus (BSMV)-mediated host-induced gene silencing (HIGS) results in a significant reduction in the length of infection hyphae and disease phenotype. These results indicate that PsCPK1 is an important pathogenicity factor by regulating Pst growth and development. Two transgenic lines expressing the RNA interference (RNAi) construct in a normally susceptible wheat cultivar displayed high levels of stable and consistent resistance to Pst throughout the T3 to T4 generations. The presence of the interfering RNAs in transgenic wheat plants was confirmed by northern blotting, and these RNAs were found to efficiently down-regulate PsCPK1 expression in wheat. This study addresses important aspects for the development of fungal-derived resistance through the expression of silencing constructs in host plants as a powerful strategy to control cereal rust diseases.