Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2790: 213-226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38649573

RESUMO

Canopy photosynthesis (Ac), rather than leaf photosynthesis, is critical to gaining higher biomass production in the field because the daily or seasonal integrals of Ac correlate with the daily or seasonal integrals of biomass production. The canopy photosynthesis and transpiration measurement system (CAPTS) was developed to enable measurement of canopy photosynthetic CO2 uptake, transpiration, and respiration rates. CAPTS continuously records the CO2 concentration, water vapor concentration, air temperature, air pressure, air relative humidity, and photosynthetic photon flux density (PPFD) inside the chamber, which can be used to derive CO2 and H2O fluxes of a canopy covered by the chamber. This system can also be used to measure the fluxes of greenhouse gases when integrating with CH4 and N2O analyzers. Here, we describe the protocol for using CAPTS to perform experiments on rice (Oryza sativa L.) in paddy field, wheat (Triticum aestivum L.) in upland field, and tobacco (Nicotiana tabacum L.) in pots.


Assuntos
Dióxido de Carbono , Oryza , Fotossíntese , Folhas de Planta , Transpiração Vegetal , Fotossíntese/fisiologia , Transpiração Vegetal/fisiologia , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análise , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Oryza/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Nicotiana/fisiologia , Nicotiana/metabolismo , Nicotiana/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Triticum/fisiologia , Triticum/metabolismo , Água/metabolismo
2.
Plant Cell ; 35(5): 1334-1359, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36691724

RESUMO

Gynandropsis gynandra (Cleomaceae) is a cosmopolitan leafy vegetable and medicinal plant, which has also been used as a model to study C4 photosynthesis due to its evolutionary proximity to C3 Arabidopsis (Arabidopsis thaliana). Here, we present the genome sequence of G. gynandra, anchored onto 17 main pseudomolecules with a total length of 740 Mb, an N50 of 42 Mb and 30,933 well-supported gene models. The G. gynandra genome and previously released genomes of C3 relatives in the Cleomaceae and Brassicaceae make an excellent model for studying the role of genome evolution in the transition from C3 to C4 photosynthesis. Our analyses revealed that G. gynandra and its C3 relative Tarenaya hassleriana shared a whole-genome duplication event (Gg-α), then an addition of a third genome (Th-α, +1×) took place in T. hassleriana but not in G. gynandra. Analysis of syntenic copy number of C4 photosynthesis-related gene families indicates that G. gynandra generally retained more duplicated copies of these genes than C3T. hassleriana, and also that the G. gynandra C4 genes might have been under positive selection pressure. Both whole-genome and single-gene duplication were found to contribute to the expansion of the aforementioned gene families in G. gynandra. Collectively, this study enhances our understanding of the polyploidy history, gene duplication and retention, as well as their impact on the evolution of C4 photosynthesis in Cleomaceae.


Assuntos
Arabidopsis , Brassicaceae , Magnoliopsida , Duplicação Gênica , Magnoliopsida/genética , Brassicaceae/genética , Arabidopsis/genética , Fotossíntese/genética , Evolução Molecular
3.
New Phytol ; 235(2): 446-456, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35451127

RESUMO

Photosystem II (PSII), which splits water molecules at minimal excess photochemical potential, is inevitably photoinactivated during photosynthesis, resulting in compromised photosynthetic efficiency unless it is repaired. The energy cost of PSII repair is currently uncertain, despite attempts to calculate it. We experimentally determined the energy cost of repairing each photoinactivated PSII in cotton (Gossypium hirsutum) leaves, which are capable of repairing PSII in darkness. As an upper limit, 24 000 adenosine triphosphate (ATP) molecules (including any guanosine triphosphate synthesized at the expense of ATP) were required to repair one entire PSII complex. Further, over a 7-h illumination period at 526-1953 µmol photons m-2 s-1 , the ATP requirement for PSII repair was on average up to 4.6% of the ATP required for the gross carbon assimilation. Each of these two measures of ATP requirement for PSII repair is two- to three-fold greater than the respective reported calculated value. Possible additional energy sinks in the PSII repair cycle are discussed.


Assuntos
Gossypium , Complexo de Proteína do Fotossistema II , Trifosfato de Adenosina/metabolismo , Clorofila , Gossypium/metabolismo , Luz , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo
4.
Plant Methods ; 16: 92, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32647532

RESUMO

BACKGROUND: Photosynthesis of reproductive organs in C3 cereals is generally regarded as important to crop yield. Whereas, photosynthetic characteristics of reproductive organs are much less understood as compared to leaf photosynthesis, mainly due to methodological limitations. To date, many indirect methods have been developed to study photosynthesis of reproductive organs and its contribution to grain yield, such as organ shading, application of herbicides and photosynthetic measurement of excised organs or tissues, which might be intrusive and cause biases. Thus, a robust and in situ approach needs to be developed. RESULTS: Here we report the development of a custom-built panicle photosynthesis chamber (P-chamber), which can be connected to standard infrared gas analyzers to study photosynthetic/respiratory rate of a rice panicle. With the P-chamber, we measured panicle photosynthetic characteristics of seven high-yielding elite japonica, japonica-indica hybrid and indica rice cultivars. Results show that, (1) rice panicle is photosynthetically active during grain filling, and there are substantial inter-cultivar variations in panicle photosynthetic and respiratory rates, no matter on a whole panicle basis, on an area basis or on a single spikelet basis; (2) among the seven testing cultivars, whole-panicle gross photosynthetic rates are 17-54 nmol s-1 5 days after heading under photon flux density (PFD) of 2000 µmol (photons) m-2 s-1, which represent some 20-38% of that of the corresponding flag leaves; (3) rice panicle photosynthesis has higher apparent CO2 compensation point, light compensation point and apparent CO2 saturation point, as compared to that of a typical leaf; (4) there is a strong and significant positive correlation between gross photosynthetic rate 5 days after heading on a single spikelet basis and grain setting rate at harvest (Pearson correlation coefficient r = 0.93, p value < 0.0001). CONCLUSIONS: Rice panicle gross photosynthesis is significant, has great natural variation, and plays an underappreciated role in grain yield formation. The P-Chamber can be used as a tool to study in situ photosynthetic characteristics of irregular non-foliar plant organs, such as ears, culms, leaf sheaths, fruits and branches, which is a relatively less explored area in current cereal breeding community.

5.
Int J Mol Sci ; 21(14)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668582

RESUMO

Respiration is a major plant physiological process that generates adenosine triphosphate (ATP) to support the various pathways involved in the plant growth and development. After decades of focused research on basic mechanisms of respiration, the processes and major proteins involved in respiration are well elucidated. However, much less is known about the natural variation of respiration. Here we conducted a survey on the natural variation of leaf dark respiration (Rd) in a global rice minicore diversity panel and applied a genome-wide association study (GWAS) in rice (Oryza sativa L.) to determine candidate loci associated with Rd. This rice minicore diversity panel consists of 206 accessions, which were grown under both growth room (GR) and field conditions. We found that Rd shows high single-nucleotide polymorphism (SNP) heritability under GR and it is significantly affected by genotype-environment interactions. Rd also exhibits strong positive correlation to the leaf thickness and chlorophyll content. GWAS results of Rd collected under GR and field show an overlapped genomic region in the chromosome 3 (Chr.3), which contains a lead SNP (3m29440628). There are 12 candidate genes within this region; among them, three genes show significantly higher expression levels in accessions with high Rd. Particularly, we observed that the LRK1 gene, annotated as leucine rich repeat receptor kinase, was up-regulated four times. We further found that a single significantly associated SNPs at the promoter region of LRK1, was strongly correlated with the mean annual temperature of the regions from where minicore accessions were collected. A rice lrk1 mutant shows only ~37% Rd of that of WT and retarded growth following exposure to 35 °C for 30 days, but only 24% reduction in growth was recorded under normal temperature (25 °C). This study demonstrates a substantial natural variation of Rd in rice and that the LRK1 gene can regulate leaf dark respiratory fluxes, especially under high temperature.


Assuntos
Genes de Plantas , Oryza/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas Quinases/genética , Sequência de Aminoácidos , Sistemas CRISPR-Cas , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Respiração Celular , Clorofila/metabolismo , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Escuridão , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Efeito Estufa , Haplótipos/genética , Temperatura Alta , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/efeitos da radiação , Fotossíntese , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/fisiologia , Polimorfismo de Nucleotídeo Único , Proteínas Quinases/fisiologia , Alinhamento de Sequência
6.
Methods Mol Biol ; 1770: 69-81, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29978396

RESUMO

Canopy photosynthesis (Ac), rather than leaf photosynthesis, is critical to gaining higher biomass production in the field because the daily or seasonal integrals of Ac correlate with the daily or seasonal integrals of biomass production. The canopy photosynthesis and transpiration measurement system (CAPTS) was developed to enable measurement of canopy photosynthetic CO2 uptake, transpiration, and respiration rates. CAPTS continuously records the CO2 concentration, water vapor concentration, air temperature, air pressure, air relative humidity, and photosynthetic photon flux density (PPFD) inside the chamber, which can be used to derive CO2 and H2O fluxes of a canopy covered by the chamber. Here we describe the protocol of using CAPTS to perform experiments on rice (Oryza sativa L.) in paddy field, wheat (Triticum aestivum L.) in upland field, and tobacco (Nicotiana tabacum L.) in pots.


Assuntos
Bioensaio/métodos , Respiração Celular , Fotossíntese , Fenômenos Fisiológicos Vegetais , Bioensaio/instrumentação , Dióxido de Carbono/metabolismo , Análise de Dados , Oryza/fisiologia , Oxigênio/metabolismo , Software , Nicotiana/fisiologia , Triticum/fisiologia
7.
Proc Natl Acad Sci U S A ; 113(50): 14225-14230, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911807

RESUMO

Terpenes are the major secondary metabolites produced by plants, and have diverse industrial applications as pharmaceuticals, fragrance, solvents, and biofuels. Cyanobacteria are equipped with efficient carbon fixation mechanism, and are ideal cell factories to produce various fuel and chemical products. Past efforts to produce terpenes in photosynthetic organisms have gained only limited success. Here we engineered the cyanobacterium Synechococcus elongatus PCC 7942 to efficiently produce limonene through modeling guided study. Computational modeling of limonene flux in response to photosynthetic output has revealed the downstream terpene synthase as a key metabolic flux-controlling node in the MEP (2-C-methyl-d-erythritol 4-phosphate) pathway-derived terpene biosynthesis. By enhancing the downstream limonene carbon sink, we achieved over 100-fold increase in limonene productivity, in contrast to the marginal increase achieved through stepwise metabolic engineering. The establishment of a strong limonene flux revealed potential synergy between photosynthate output and terpene biosynthesis, leading to enhanced carbon flux into the MEP pathway. Moreover, we show that enhanced limonene flux would lead to NADPH accumulation, and slow down photosynthesis electron flow. Fine-tuning ATP/NADPH toward terpene biosynthesis could be a key parameter to adapt photosynthesis to support biofuel/bioproduct production in cyanobacteria.


Assuntos
Cicloexenos/metabolismo , Synechococcus/metabolismo , Terpenos/metabolismo , Trifosfato de Adenosina/metabolismo , Biocombustíveis , Eritritol/análogos & derivados , Eritritol/metabolismo , Microbiologia Industrial , Cinética , Limoneno , Engenharia Metabólica , Redes e Vias Metabólicas , Modelos Biológicos , NADP/metabolismo , Fotossíntese , Proteômica , Fosfatos Açúcares/metabolismo
8.
Plant Cell ; 25(8): 2813-30, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23983221

RESUMO

The Brassicaceae, including Arabidopsis thaliana and Brassica crops, is unmatched among plants in its wealth of genomic and functional molecular data and has long served as a model for understanding gene, genome, and trait evolution. However, genome information from a phylogenetic outgroup that is essential for inferring directionality of evolutionary change has been lacking. We therefore sequenced the genome of the spider flower (Tarenaya hassleriana) from the Brassicaceae sister family, the Cleomaceae. By comparative analysis of the two lineages, we show that genome evolution following ancient polyploidy and gene duplication events affect reproductively important traits. We found an ancient genome triplication in Tarenaya (Th-α) that is independent of the Brassicaceae-specific duplication (At-α) and nested Brassica (Br-α) triplication. To showcase the potential of sister lineage genome analysis, we investigated the state of floral developmental genes and show Brassica retains twice as many floral MADS (for minichromosome maintenance1, AGAMOUS, DEFICIENS and serum response factor) genes as Tarenaya that likely contribute to morphological diversity in Brassica. We also performed synteny analysis of gene families that confer self-incompatibility in Brassicaceae and found that the critical serine receptor kinase receptor gene is derived from a lineage-specific tandem duplication. The T. hassleriana genome will facilitate future research toward elucidating the evolutionary history of Brassicaceae genomes.


Assuntos
Brassicaceae/genética , Evolução Molecular , Genoma de Planta/genética , Característica Quantitativa Herdável , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Anotação de Sequência Molecular , Filogenia , Mapeamento Físico do Cromossomo , Poliploidia , Reprodução/genética , Autoincompatibilidade em Angiospermas/genética , Análise de Sequência de DNA , Sintenia/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA