RESUMO
Myocardial infarction (MI) is a leading cause of death globally. Stem cell therapy is considered a potential strategy for MI treatment. Transplantation of classic stem cells including embryonic, induced pluripotent and cardiac stem cells exhibited certain repairing effect on MI via supplementing cardiomyocytes, however, their clinical applications were blocked by problems of cell survival, differentiation, functional activity and also biosafety and ethical concerns. Here, we introduced human amniotic epithelial stem cells (hAESCs) featured with immunomodulatory activities, immune-privilege and biosafety, for constructing a stem cell cardiac patch based on porous antioxidant polyurethane (PUR), which demonstrated decent hAESCs compatibility. In rats, the administration of PUR-hAESC patch significantly reduced fibrosis and facilitated vascularization in myocardium after MI and consequently improved cardiac remodeling and function. Mechanistically, the patch provides a beneficial microenvironment for cardiac repair by facilitating a desirable immune response, paracrine modulation and limited oxidative milieu. Our findings may provide a potential therapeutic strategy for MI.
Assuntos
Âmnio , Antioxidantes , Células Epiteliais , Infarto do Miocárdio , Poliuretanos , Alicerces Teciduais , Infarto do Miocárdio/terapia , Poliuretanos/química , Humanos , Animais , Alicerces Teciduais/química , Âmnio/citologia , Ratos , Transplante de Células-Tronco/métodos , Ratos Sprague-Dawley , Pericárdio , Masculino , Miócitos Cardíacos/citologia , Miócitos Cardíacos/transplante , Células-Tronco/citologia , Miocárdio/patologiaRESUMO
Aromatase (CYP19A1), a pivotal enzyme in the biosynthesis of estradiol from testosterone, is predominantly expressed in reproductive tissues including placentas. This study investigated the effects of paraben acid and nine parabens on the activity of human and rat CYP19A1 using microsomes derived from human and rat placentas and on estradiol secretion in human choriocarcinoma BeWo cells. The results showed that propyl, butyl, hexyl, heptyl, and nonyl parabens significantly inhibited human CYP19A1 activity, with IC50 values of 66.37, 61.08, 55.65, 48.26, and 27.24⯵M, respectively. In BeWo cells, these parabens notably diminished estradiol secretion at concentrations of 100⯵M. Similarly, rat CYP19A1 was inhibited by these parabens, with IC50 values of 98.07, 70.10, 41.30, 27.93, and 6.33⯵M for propyl, butyl, hexyl, heptyl, and nonyl parabens, respectively. Kinetic analysis identified these compounds as mixed inhibitors. Bivariate correlation analysis revealed a negative correlation between the partition coefficient value, molecular weight, the number of carbon atoms in the alcohol moiety, as well as heavy atom number and IC50 values. Three-dimensional quantitative structure-activity relationship analysis highlighted the critical role of hydrophobic regions in determining inhibitory potency. Docking studies suggested that parabens interact with the heme-iron binding site of both human and rat CYP19A1. This study elucidates the inhibitory effects of various parabens on CYP19A1 and their binding mechanisms, thereby providing a deeper understanding of their potential impact on estrogen biosynthesis.
RESUMO
Parabens are preservatives used in personal care products, cosmetics, and pharmaceuticals. Steroid 5α-reductase 1 (SRD5A1) catalyzes the conversion of testosterone to dihydrotestosterone and is present in the brain, contributing to neurosteroid production. This study aimed to assess the effects of nine paraben preservatives on SRD5A1 in human SF126 glioblastoma cell and rat brain microsomes, particularly focusing on dihydrotestosterone production in SF126 cells. The results showed that methyl, ethyl, propyl, butyl, hexyl, heptyl, nonyl, phenyl, and benzyl paraben inhibited human SRD5A1, with nonylparaben having the strongest effect (7.59 µM). Additionally, kinetic analysis indicated that parabens acted as mixed/noncompetitive inhibitors, leading to a significant decrease in dihydrotestosterone production in SF126 cells. While rat SRD5A1 exhibited lower sensitivity to parabens, docking analysis revealed that parabens bind to the NADPH-binding site of both human and rat SRD5A1. In conclusion, these results highlight the inhibitory effects of paraben preservatives on SRD5A1 and elucidate their binding mechanisms, underscoring their role in hormone production.
RESUMO
Extranodal Natural Killer/T Cell Lymphoma Nasal Type (EN-NK/T-CL-NT) is a rare type of non-Hodgkin lymphoma in which the lesion is usually located in the upper respiratory tract, such as nasal cavity, palate, and nasopharynx. In addition, the primary lesion of EN-NK/T-CL-NT can rarely originate in extranasal sites such as the skin, gastrointestinal tract, testicles, central nervous system, and lungs. We describe an 82-year-old male smoker was brought to the hospital with 8 months of fever, cough, sputum production, chest pain, and chest tightness. Computed tomography (CT) of the chest showed subpleural high-density shadow in the lower lobe of the right lung with unclear borders and surrounding patchy ground-glass shadow. Initially, the patient's right lower lobe lesion progressed after receiving anti-inflammatory treatment. He subsequently underwent two computerized tomography (CT)-guided percutaneous transthoracic needle aspiration biopsies and a bronchoscopy, but no tumor cells were found. Through multidisciplinary team discussions, the patient was then transferred to the department of cardiothoracic surgery for right lower lobectomy. Finally, extranodal natural killer/T-cell lymphoma (ENKTCL), nasal type, was confirmed by pathology of the surgical specimen. The diagnosis of primary pulmonary ENKTCL was made because no evidence other than extrapulmonary site was found at the time of diagnosis and treatment. Here we report a case of primary pulmonary extranodal natural killer/T-cell lymphoma of nasal type presenting as pneumonia in the right lower lobe and enhance the understanding of the disease.
RESUMO
Rapeseed is a globally significant oilseed crop cultivated to meet the increasing demand for vegetable oil. In order to enhance yield and sustainability, breeders have adopted the development of rapeseed hybrids as a common strategy. However, current hybrid production systems in rapeseed have various limitations, necessitating the development of a simpler and more efficient approach. In this study, we propose a novel method involving the targeted disruption of Defective in Anther Dehiscence1 of Brassica napus (BnDAD1), an essential gene in the jasmonic acid biosynthesis pathway, using CRISPR/Cas9 technology, to create male-sterile lines. BnDAD1 was found to be dominantly expressed in the stamen of rapeseed flower buds. Disrupting BnDAD1 led to decreased levels of α-linolenic acid and jasmonate in the double mutants, resulting in defects in anther dehiscence and pollen maturation. By crossing the double mutant male-sterile lines with male-fertile lines, a two-line system was demonstrated, enabling the production of F 1 seeds. The male-sterile trait of the bndad1 double mutant lines was maintainable by applying exogenous methyl jasmonate and subsequently self-pollinating the flowers. This breakthrough holds promising potential for harnessing heterosis in rapeseed and offers a simpler and more efficient method for producing hybrid seeds.
RESUMO
Parabens are commonly used preservatives in cosmetics, food, and pharmaceutical products. The objective of this study was to examine the effect of nine parabens on human and rat 17ß-hydroxysteroid dehydrogenase 1 (17ß-HSD1) in human placental and rat ovarian cytosols, as well as on estradiol synthesis in BeWo cells. The results showed that the IC50 values for these compounds varied from methylparaben with the weakest inhibition (106.42⯵M) to hexylparaben with the strongest inhibition (2.05⯵M) on human 17ß-HSD1. Mode action analysis revealed that these compounds acted as mixed inhibitors. For rats, the IC50 values ranged from the weakest inhibition for methylparaben (no inhibition at 100 µM) to the most potent inhibition for hexylparaben (0.87⯵M), and they functioned as mixed inhibitors. Docking analysis indicated that parabens bind to the region bridging the NADPH and steroid binding sites of human 17ß-HSD1 and the NADPH binding site of rat 17ß-HSD1. Bivariate correlation analysis demonstrated negative correlations between LogP, molecular weight, heavy atoms, and apolar desolvation energy, and the IC50 values of these compounds. In conclusion, this study identified the inhibitory effects of parabens and their binding mechanisms on human and rat 17ß-HSD1, as well as their impact on hormone synthesis.
Assuntos
Estradiol , Simulação de Acoplamento Molecular , Parabenos , Placenta , Parabenos/toxicidade , Animais , Humanos , Ratos , Feminino , Placenta/efeitos dos fármacos , Placenta/metabolismo , Placenta/enzimologia , 17-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , 17-Hidroxiesteroide Desidrogenases/metabolismo , Gravidez , Conservantes Farmacêuticos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Ovário/enzimologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Sítios de Ligação , Estradiol Desidrogenases/antagonistas & inibidores , Estradiol Desidrogenases/metabolismoRESUMO
The effectiveness of tumor treatment using reactive oxygen species as the primary therapeutic medium is hindered by limitations of tumor microenvironment (TME), such as intrinsic hypoxia in photodynamic therapy (PDT) and overproduction of reducing glutathione (GSH) in chemodynamic therapy (CDT). Herein, we fabricate metal-polyphenol self-assembled nanodots (Fe@BDP NDs) guided by second near-infrared (NIR-II) fluorescence imaging. The Fe@BDP NDs are designed for synergistic combination of type-I PDT and CDT-amplified ferroptosis. In a mildly acidic TME, Fe@BDP NDs demonstrate great Fenton activity, leading to the generation of highly toxic hydroxyl radicals from overproduced hydrogen peroxide in tumor cells. Furthermore, Fe@BDP NDs show favorable efficacy in type-I PDT, even in tolerating tumor hypoxia, generating active superoxide anion upon exposure to 808 nm laser irradiation. The significant efficiency in reactive oxygen species (ROS) products results in the oxidation of sensitive polyunsaturated fatty acids, accelerating lethal lipid peroxidation (LPO) bioprocess. Additionally, Fe@BDP NDs illustrate an outstanding capability for GSH depletion, causing the inactivation of glutathione peroxidase 4 and further promoting lethal LPO. The synergistic type-I photodynamic and chemodynamic cytotoxicity effectively trigger irreversible ferroptosis by disrupting the intracellular redox homeostasis. Moreover, Fe@BDP NDs demonstrate charming NIR-II fluorescence imaging capability and effectively accumulated at the tumor site, visualizing the distribution of Fe@BDP NDs and the treatment process. The chemo/photo-dynamic-amplified ferroptotic efficacy of Fe@BDP NDs was evidenced both in vitro and in vivo. This study presents a compelling approach to intensify ferroptosis via visualized CDT and PDT. STATEMENT OF SIGNIFICANCE: In this study, we detailed the fabrication of metal-polyphenol self-assembled nanodots (Fe@BDP NDs) guided by second near-infrared (NIR-II) fluorescence imaging, aiming to intensify ferroptosis via the synergistic combination of type-I PDT and CDT. In a mildly acidic TME, Fe@BDP NDs exhibited significant Fenton activity, resulting in the generation of highly toxic â¢OH from overproduced H2O2 in tumor cells. Fe@BDP NDs possessed a remarkable capability for GSH depletion, resulting in the inactivation of glutathione peroxidase 4 (GPX4) and further accelerating lethal LPO. This study presented a compelling approach to intensify ferroptosis via visualized CDT and PDT.
Assuntos
Ferroptose , Fotoquimioterapia , Polifenóis , Ferroptose/efeitos dos fármacos , Fotoquimioterapia/métodos , Humanos , Animais , Polifenóis/química , Polifenóis/farmacologia , Imagem Óptica , Camundongos , Linhagem Celular Tumoral , Raios Infravermelhos , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas/química , Camundongos Endogâmicos BALB CRESUMO
Intratumor bacteria, which are involved with complex tumor development mechanisms, can compromise the therapeutic efficiencies of cancer chemotherapeutics. Therefore, the development of anti-tumor agents targeting intratumor bacteria is crucial in overcoming the drug inactivation induced by bacteria colonization. In this study, a double-bundle DNA tetrahedron-based nanocarrier is developed for intratumor bacteria-targeted berberine (Ber) delivery. The combination of aptamer modification and high drug loading efficacy endow the DNA nanocarrier TA@B with enhanced delivery performance in anti-tumor therapy without obvious systemic toxicity. The loaded natural isoquinoline alkaloid Ber exhibits enhanced antimicrobial, anticancer, and immune microenvironment regulation effects, ultimately leading to efficient inhibition of tumor proliferation. This intratumor bacteria-targeted DNA nanoplatform provides a promising strategy in intervening the bacteria-related microenvironment and facilitating tumor therapy.
RESUMO
Metastasis causes greater than 90% of cancer-associated deaths, presenting huge challenges for detection and efficient treatment of cancer due to its high heterogeneity and widespread dissemination to various organs. Therefore, it is imperative to combat cancer metastasis, which is the key to achieving complete cancer eradication. Immunotherapy as a systemic approach has shown promising potential to combat metastasis. However, current clinical immunotherapies are not effective for all patients or all types of cancer metastases owing to insufficient immune responses. In recent years, immunological nanomaterials with intrinsic immunogenicity or immunomodulatory agents with efficient loading have been shown to enhance immune responses to eliminate metastasis. In this review, we would like to summarize various types of immunological nanomaterials against metastasis. Moreover, this review will summarize a series of immunological nanomaterial-mediated immunotherapy strategies to combat metastasis, including immunogenic cell death, regulation of chemokines and cytokines, improving the immunosuppressive tumour microenvironment, activation of the STING pathway, enhancing cytotoxic natural killer cell activity, enhancing antigen presentation of dendritic cells, and enhancing chimeric antigen receptor T cell therapy. Furthermore, the synergistic anti-metastasis strategies based on the combinational use of immunotherapy and other therapeutic modalities will also be introduced. In addition, the nanomaterial-mediated imaging techniques (e.g., optical imaging, magnetic resonance imaging, computed tomography, photoacoustic imaging, surface-enhanced Raman scattering, radionuclide imaging, etc.) for detecting metastasis and monitoring anti-metastasis efficacy are also summarized. Finally, the current challenges and future prospects of immunological nanomaterial-based anti-metastasis are also elucidated with the intention to accelerate its clinical translation.
Assuntos
Imunoterapia , Nanoestruturas , Metástase Neoplásica , Neoplasias , Humanos , Nanoestruturas/química , Neoplasias/terapia , Neoplasias/patologia , Neoplasias/diagnóstico por imagem , Neoplasias/imunologia , Animais , Microambiente TumoralRESUMO
Cuproptosis is a newly discovered form of programmed cell death significantly depending on the transport efficacy of copper (Cu) ionophores. However, existing Cu ionophores, primarily small molecules with a short blood half-life, face challenges in transporting enough amounts of Cu ions into tumor cells. This work describes the construction of carrier-free nanoparticles (Ce6@Cu NPs), which self-assembled by the coordination of Cu2+ with the sonosensitizer chlorin e6 (Ce6), facilitating sonodynamic-triggered combination of cuproptosis and ferroptosis. Ce6@Cu NPs internalized by U87MG cells induce a sonodynamic effect and glutathione (GSH) depletion capability, promoting lipid peroxidation and eventually inducing ferroptosis. Furthermore, Cu+ concentration in tumor cells significantly increases as Cu2+ reacts with reductive GSH, resulting in the downregulation of ferredoxin-1 and lipoyl synthase. This induces the oligomerization of lipoylated dihydrolipoamide S-acetyltransferase, causing proteotoxic stress and irreversible cuproptosis. Ce6@Cu NPs possess a satisfactory ability to penetrate the blood-brain barrier, resulting in significant accumulation in orthotopic U87MG-Luc glioblastoma. The sonodynamic-triggered combination of ferroptosis and cuproptosis in the tumor by Ce6@Cu NPs is evidenced both in vitro and in vivo with minimal side effects. This work represents a promising tumor therapeutic strategy combining ferroptosis and cuproptosis, potentially inspiring further research in developing logical and effective cancer therapies based on cuproptosis.
Assuntos
Clorofilídeos , Cobre , Ferroptose , Glioblastoma , Porfirinas , Ferroptose/efeitos dos fármacos , Glioblastoma/metabolismo , Glioblastoma/terapia , Animais , Camundongos , Cobre/química , Humanos , Porfirinas/química , Porfirinas/farmacologia , Linhagem Celular Tumoral , Nanopartículas/química , Modelos Animais de Doenças , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/metabolismoRESUMO
BACKGROUND: Circulating tumor cells (CTCs) hold immense promise in guiding treatment strategies for advanced gastric cancer (GC). However, their clinical impact has been limited due to challenges in identifying epithelial-mesenchymal transition (EMT)-CTCs using conventional methods. METHODS: To bridge this knowledge gap, we established a detection platform for CTCs based on the distinctive biomarker cell surface vimentin (CSV). A prospective study involving 127 GC patients was conducted, comparing CTCs enumeration using both EpCAM and CSV. This approach enabled the detection of both regular and EMT-CTCs, providing a comprehensive analysis. Spiking assays and WES were employed to verify the reliability of this marker and technique. To explore the potential inducer of CSV+CTCs formation, a combination of Tandem Mass Tag (TMT) quantitative proteomics, m6A RNA immunoprecipitation-qPCR (MeRIP-qPCR), single-base elongation- and ligation-based qPCR amplification method (SELECT) and RNA sequencing (RNA-seq) were utilized to screen and confirm the potential target gene. Both in vitro and in vivo experiments were performed to explore the molecular mechanism of CSV expression regulation and its role in GC metastasis. RESULTS: Our findings revealed the potential of CSV in predicting therapeutic responses and long-term prognosis for advanced GC patients. Additionally, compared to the conventional EpCAM-based CTCs detection method, the CSV-specific positive selection CTCs assay was significantly better for evaluating the therapeutic response and prognosis in advanced GC patients and successfully predicted disease progression 14.25 months earlier than radiology evaluation. Apart from its excellent role as a detection marker, CSV emerges as a promising therapeutic target for attenuating GC metastasis. It was found that fat mass and obesity associated protein (FTO) could act as a potential catalyst for CSV+CTCs formation, and its impact on the insulin-like growth factor-I receptor (IGF-IR) mRNA decay through m6A modification. The activation of IGF-I/IGF-IR signaling enhanced the translocation of vimentin from the cytoplasm to the cell surface through phosphorylation of vimentin at serine 39 (S39). In a GC mouse model, the simultaneous inhibition of CSV and blockade of the IGF-IR pathway yielded promising outcomes. CONCLUSION: In summary, leveraging CSV as a universal CTCs marker represents a significant breakthrough in advancing personalized medicine for patients with advanced GC. This research not only paves the way for tailored therapeutic strategies but also underscores the pivotal role of CSV in enhancing GC management, opening new frontiers for precision medicine.
Assuntos
Biomarcadores Tumorais , Células Neoplásicas Circulantes , Neoplasias Gástricas , Vimentina , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Estudos Prospectivos , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Vimentina/metabolismoRESUMO
Prenatal exposure to diethylhexyl phthalate (DEHP) has been linked with a decline in testosterone levels in adult male rats, but the underlying mechanism remains unclear. We investigated the potential epigenetic regulation, particularly focusing on N6-methyladenosine (m6A) modification, as a possible mechanism. Dams were gavaged with DEHP (0, 10, 100, and 750â¯mg/kg/day) from gestational day 14 to day 21. The male offspring were examined at the age of 56 days. Prenatal DEHP administration at 750â¯mg/kg/day caused a decline in testosterone concentrations, an elevation in follicle-stimulating hormone, a downregulated expression of CYP11A1 HSD3B2, without affecting Leydig cell numbers. Interestingly, Methyltransferase Like 4 (METTL4), an m6A methyltransferase, was downregulated, while there were no changes in METTL3 and METTL14. Moreover, CYP11A1 showed m6A reduction in response to prenatal DEHP exposure. Additionally, METTL4 expression increased postnatally, peaking in adulthood. Knockdown of METTL4 resulted in the downregulation of CYP11A1 and HSD3B2 and an increase in SCARB1 expression. Furthermore, the increase in autophagy protection in adult Leydig cells induced by prenatal DEHP exposure was not affected by 3-methyladenosine (3MA) treatment, indicating a potential protective role of autophagy in response to DEHP exposure. In conclusion, prenatal DEHP exposure reduces testosterone by downregulating CYP11A1 and HSD3B2 via m6A epigenetic regulation and induction of autophagy protection in adult Leydig cells as a response to DEHP exposure.
Assuntos
Dietilexilftalato , Regulação para Baixo , Epigênese Genética , Células Intersticiais do Testículo , Metiltransferases , Efeitos Tardios da Exposição Pré-Natal , Testosterona , Animais , Feminino , Masculino , Gravidez , Ratos , Adenosina/análogos & derivados , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Dietilexilftalato/toxicidade , Dietilexilftalato/análogos & derivados , Regulação para Baixo/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Células Intersticiais do Testículo/efeitos dos fármacos , Metiltransferases/genética , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos Sprague-Dawley , Testosterona/sangueRESUMO
The objective of this study was to examine the effect of 11 organochlorine pesticides on human and rat 17ß-Hydroxysteroid dehydrogenase 1 (17ß-HSD1) in human placental and rat ovarian microsome and on estradiol production in BeWo cells. The results showed that the IC50 values for endosulfan, fenhexamid, chlordecone, and rhothane on human 17ß-HSD1 were 21.37, 73.25, 92.80, and 117.69⯵M. Kinetic analysis revealed that endosulfan acts as a competitive inhibitor, fenhexamid as a mixed/competitive inhibitor, chlordecone and rhothane as a mixed/uncompetitive inhibitor. In BeWo cells, all insecticides except endosulfan significantly decreased estradiol production at 100⯵M. For rats, the IC50 values for dimethomorph, fenhexamid, and chlordecone were 11.98, 36.92, and 109.14⯵M. Dimethomorph acts as a mixed inhibitor, while fenhexamid acts as a mixed/competitive inhibitor. Docking analysis revealed that endosulfan and fenhexamid bind to the steroid-binding site of human 17ß-HSD1. On the other hand, chlordecone and rhothane binds to a different site other than the steroid and NADPH-binding site. Dimethomorph binds to the steroid/NADPH binding site, and fenhexamid binds to the steroid binding site of rat 17ß-HSD1. Bivariate correlation analysis showed a positive correlation between IC50 values and LogP for human 17ß-HSD1, while a slight negative correlation was observed between IC50 values and the number of HBA. ADMET analysis provided insights into the toxicokinetics and toxicity of organochlorine pesticides. In conclusion, this study identified the inhibitory effects of 3-4 organochlorine pesticides and binding mechanisms on human and rat 17ß-HSD1, as well as their impact on hormone production.
Assuntos
Hidrocarbonetos Clorados , Simulação de Acoplamento Molecular , Praguicidas , Animais , Humanos , Ratos , Hidrocarbonetos Clorados/química , Hidrocarbonetos Clorados/farmacologia , Relação Estrutura-Atividade , Feminino , Praguicidas/química , Praguicidas/metabolismo , 17-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , 17-Hidroxiesteroide Desidrogenases/metabolismo , 17-Hidroxiesteroide Desidrogenases/química , Gravidez , Placenta/metabolismo , Estradiol/metabolismo , Estradiol/química , Inseticidas/química , Inseticidas/farmacologiaRESUMO
BACKGROUND: While papillary thyroid carcinoma (PTC) generally exhibits a favorable prognosis post-surgery, the poorly differentiated subtype presents elevated rates of postoperative recurrence. Certain aggressive cases demonstrate invasive behavior, compromising adjacent structures and leading to a poor prognosis. This study delineates a unique case of postoperative PTC recurrence, complicated by esophageal fistula, that showed favorable outcomes following brief Vemurafenib treatment. PATIENT DESCRIPTION: A 64-year-old female patient underwent surgical resection for PTC, subsequently experiencing rapid tumor recurrence and development of an esophageal fistula. DIAGNOSIS: The patient was confirmed to have locally advanced PTC through intraoperative cytopathology. The cancer recurred postoperatively, culminating in the formation of an esophageal fistula. METHODS: The patient was administered Vemurafenib at a dosage of 960 mg twice daily following tumor recurrence. RESULTS: A 12-month regimen of targeted Vemurafenib therapy led to a substantial reduction in tumor size. Concurrently, the esophageal fistula underwent complete healing, facilitating successful removal of the gastrostomy tube. The tumor response was classified as stable disease. CONCLUSION SUBSECTIONS: Vemurafenib demonstrates potential as a targeted therapeutic strategy for recurrent PTC harboring the BRAFV600E mutation. This approach may effectively mitigate tumor dimensions and the associated risk of esophageal and tracheal fistulas.
Assuntos
Carcinoma Papilar , Carcinoma , Fístula Esofágica , Neoplasias da Glândula Tireoide , Feminino , Humanos , Pessoa de Meia-Idade , Câncer Papilífero da Tireoide , Vemurafenib/uso terapêutico , Neoplasias da Glândula Tireoide/complicações , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/cirurgia , Carcinoma/tratamento farmacológico , Carcinoma/cirurgia , Carcinoma/genética , Carcinoma Papilar/tratamento farmacológico , Carcinoma Papilar/cirurgia , Carcinoma Papilar/patologia , Recidiva Local de Neoplasia/patologia , PrognósticoRESUMO
Enzymes are considered safe and effective therapeutic tools for various diseases. With the increasing integration of biomedicine and nanotechnology, artificial nanozymes offer advanced controllability and functionality in medical design. However, several notable gaps, such as catalytic diversity, specificity and biosafety, still exist between nanozymes and their native counterparts. Here we report a non-metal single-selenium (Se)-atom nanozyme (SeSAE), which exhibits potent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-mimetic activity. This novel single atom nanozyme provides a safe alternative to conventional metal-based catalysts and effectively cuts off the cellular energy and reduction equivalents through its distinctive catalytic function in tumors. In this study, we have demonstrated the substantial efficacy of SeSAE as an antitumor nanomedicine across diverse mouse models without discernible systemic adverse effects. The mechanism of the NADPH oxidase-like activity of the non-metal SeSAE was rationalized by density functional theory calculations. Furthermore, comprehensive elucidation of the biological functions, cell death pathways, and metabolic remodeling effects of the nanozyme was conducted, aiming to provide valuable insights into the development of single atom nanozymes with clinical translation potential.
Assuntos
Nanotecnologia , Neoplasias , Animais , Camundongos , Metais , Catálise , Neoplasias/tratamento farmacológico , NanomedicinaRESUMO
Tumor hypoxia diminishes the effectiveness of traditional type II photodynamic therapy (PDT) due to oxygen consumption. Type I PDT, which can operate independently of oxygen, is a viable option for treating hypoxic tumors. In this study, we have designed and synthesized JSK@PEG-IR820 NPs that are responsive to the tumor microenvironment (TME) to enhance type I PDT through glutathione (GSH) depletion. Our approach aims to expand the sources of therapeutic benefits by promoting the generation of superoxide radicals (O2-.) while minimizing their consumption. The diisopropyl group within PEG-IR820 serves a dual purpose: it functions as a pH sensor for the disassembly of the NPs to release JSK and enhances intermolecular electron transfer to IR820, facilitating efficient O2-. generation. Simultaneously, the release of JSK leads to GSH depletion, resulting in the generation of nitric oxide (NO). This, in turn, contributes to the formation of highly cytotoxic peroxynitrite (ONOO-.), thereby enhancing the therapeutic efficacy of these NPs. NIR-II fluorescence imaging guided therapy has achieved successful tumor eradication with the assistance of laser therapy.
RESUMO
BACKGROUND: Natural killer/T-cell lymphoma (NKTCL) is a rare and heterogeneous tumor type of non-Hodgkin's lymphoma (NHL) with a poor clinical outcome. There is no standardized salvage treatment failing l-asparaginase-based regimens. Here we report our retrospective results of the combined use of selinexor and PD-1 blockade (tislelizumab) in 5 patients with NKTCL who had exhausted almost all available treatments. PATIENTS AND METHODS: A total of 5 patients with relapsed/refractory(R/R) NK/T-cell lymphomas failing prior l-asparaginase and anti-PD-1 antibody were retrospectively collected. They were treated with at least one cycle of XPO1 inhibitor plus the same anti-PD-1 antibody. Anti-PD-1 antibody (Tislelizumab) was administrated at 200 mg on day 1 every 3 weeks and selinexor doses and schedules ranged from 40 mg weekly for 2 weeks per 21-day cycle to 60 mg weekly per cycle. RESULTS: Five patients with relapsed NKTCL with extensive organ involvement including 4 central nervous system (CNS) infiltration patients were included. Four patients achieved objective responses including 3 complete responses (CR) and 1 partial response (PR). After a median follow-up time of 14.5 (range, 5-22) months, 1 patient was still in remission with CR, and the other 4 patients discontinued due to disease progression with a median progression-free survival (PFS) of 6 months and median overall survival (OS) of 12 months. Four patients with CNS involvement achieved a median OS of 8 months. Our data suggest that selinexor in combination with an anti-PD-1 antibody is a promising small molecule and immunotherapy combination regimen for patients with relapsed or refractory NKTCL.
Assuntos
Linfoma de Células T , Linfoma , Humanos , Asparaginase/uso terapêutico , Estudos Retrospectivos , Receptor de Morte Celular Programada 1/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Linfoma de Células T/tratamento farmacológico , Células Matadoras Naturais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêuticoRESUMO
Real-time monitoring of hydroxyl radical (â OH) generation is crucial for both the efficacy and safety of chemodynamic therapy (CDT). Although â OH probe-integrated CDT agents can track â OH production by themselves, they often require complicated synthetic procedures and suffer from self-consumption of â OH. Here, we report the facile fabrication of a self-monitored chemodynamic agent (denoted as Fc-CD-AuNCs) by incorporating ferrocene (Fc) into ß-cyclodextrin (CD)-functionalized gold nanoclusters (AuNCs) via host-guest molecular recognition. The water-soluble CD served not only as a capping agent to protect AuNCs but also as a macrocyclic host to encapsulate and solubilize hydrophobic Fc guest with high Fenton reactivity for in vivo CDT applications. Importantly, the encapsulated Fc inside CD possessed strong electron-donating ability to effectively quench the second near-infrared (NIR-II) fluorescence of AuNCs through photoinduced electron transfer. After internalization of Fc-CD-AuNCs by cancer cells, Fenton reaction between redox-active Fc quencher and endogenous hydrogen peroxide (H2 O2 ) caused Fc oxidation and subsequent NIR-II fluorescence recovery, which was accompanied by the formation of cytotoxic â OH and therefore allowed Fc-CD-AuNCs to in situ self-report â OH generation without undesired â OH consumption. Such a NIR-II fluorescence-monitored CDT enabled the use of renal-clearable Fc-CD-AuNCs for efficient tumor growth inhibition with minimal side effects in vivo.
Assuntos
Compostos Ferrosos , Nanopartículas , Neoplasias , Humanos , Nanomedicina , Metalocenos , Fluorescência , Oxirredução , Linhagem Celular Tumoral , Peróxido de Hidrogênio/química , Nanopartículas/química , Microambiente TumoralRESUMO
Objective: A protein-based leaking-proof theranostic nanoplatform for dual-modality imaging-guided tumor photodynamic therapy (PDT) has been designed. Impact Statement: A site-specific conjugation of chlorin e6 (Ce6) to ferrimagnetic ferritin (MFtn-Ce6) has been constructed to address the challenge of unexpected leakage that often occurs during small-molecule drug delivery. Introduction: PDT is one of the most promising approaches for tumor treatment, while a delivery system is typically required for hydrophobic photosensitizers. However, the nonspecific distribution and leakage of photosensitizers could lead to insufficient drug accumulation in tumor sites. Methods: An engineered ferritin was generated for site-specific conjugation of Ce6 to obtain a leaking-proof delivery system, and a ferrimagnetic core was biomineralized in the cavity of ferritin, resulting in a fluorescent ferrimagnetic ferritin nanoplatform (MFtn-Ce6). The distribution and tumor targeting of MFtn-Ce6 can be detected by magnetic resonance imaging (MRI) and fluorescence imaging (FLI). Results: MFtn-Ce6 showed effective dual-modality MRI and FLI. A prolonged in vivo circulation and increased tumor accumulation and retention of photosensitizer was observed. The time-dependent distribution of MFtn-Ce6 can be precisely tracked in real time to find the optimal time window for PDT treatment. The colocalization of ferritin and the iron oxide core confirms the high stability of the nanoplatform in vivo. The results showed that mice treated with MFtn-Ce6 exhibited marked tumor-suppressive activity after laser irradiation. Conclusion: The ferritin-based leaking-proof nanoplatform can be used for the efficient delivery of the photosensitizer to achieve an enhanced therapeutic effect. This method established a general approach for the dual-modality imaging-guided tumor delivery of PDT agents.
RESUMO
Despite their immense therapeutic potential, cancer immunotherapies such as immune checkpoint blockers (ICBs) benefit only a small subset of patients. Toll-like receptor agonists reverse the immunosuppressive tumor microenvironment (TME) to enhance antitumor immunity, but their systemic administration induces side effects. This work describes a TME-responsive nanotherapeutic platform for the site-specific release of drug candidates in tumors with a significant antitumor efficacy. Imidazoquinoline (IMQ)-derived liposomal nanovesicles (LN-IMQ) triggered the antitumor ability of macrophages, mobilized T-cell immunity, and promoted the secretion of antitumor cytokines, explaining the synergistic effect of LN-IMQ with ICBs. LN-IMQ monotherapy observed complete tumor regression in 6/8 of 4T1-bearing mouse, and cured mice resisted secondary tumor challenge. Besides, LN-IMQ decreased the occurrence of lung metastases, being effective against advanced metastases. On the other hand, neoantigen-based cancer vaccine has very low immune responses. Here, we also verified that LN-IMQ can serve as an ideal tumor antigen delivery vector. Cancer cells in vitro treated with chemotherapeutic drugs included multiple neoantigens and high levels of damage-associated molecular patterns, which were then successfully encapsulated in LN-IMQ to obtain a "personalized nanovaccine" with artificially amplified antigenicity and adjuvant properties. This study developed an attractive potential personalized nanovaccine for chemotherapeutic-drug-induced tumor neoantigens and immunotherapy.