Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Theriogenology ; 223: 98-107, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38697014

RESUMO

The ALDH1A1 gene encodes a cytoplasmic member of the aldehyde dehydrogenase 1 family, which plays an important role in regulating animal reproductive performance, including estrus cycle and embryonic development. The aim of this study was to characterize ALDH1A1 activity in ovaries of 3-5 year-old yaks and to determine its effects on cell proliferation, apoptosis, and progesterone secretion in luteal cells (LCs). The coding sequence (CDS) of the ALDH1A1 gene was cloned by reverse transcription-PCR and immunohistochemical analysis was used to confirm localization of the ALDH1A1 protein in the ovary. To assess the activity of ALDH1A1 in regulating progesterone secretion, si-ALDH1A1 was transfected into LCs in vitro and progesterone levels in LC supernatants were measured by ELISA. The interference efficiency was assessed by real-time quantitative PCR (RT-qPCR) and immunofluorescence staining, and cell proliferation and apoptosis were evaluated by EdU and TUNEL staining, respectively. The cloned ALDH1A1 sequence contained 1462 bp, encoding 487 amino acids. Immunohistochemical analysis showed that ALDH1A1 protein expression, which was significantly higher in LCs, was mainly found in antral follicles and the corpus luteum (CL). The expression of ALDH1A1 mRNA in LCs was effectively inhibited by si-ALDH1A1transfection, and progesterone secretion was markedly decreased along with the significant down-regulation of progesterone pathway-related genes, STAR, CYP11A1, CYP19A1, CYP17A1, 3ß-HSD, and HSD17B1. Knockdown of ALDH1A1 mRNA expression decreased cell proliferation and increased apoptosis in LCs. The mRNA expression of the proliferation-related genes, PCNA, CCND1, CCNB1 and CDC25A, was significantly down-regulated, while expression of the apoptosis-promoting CASP3 gene was significantly increased. In summary, we characterized the yak ALDH1A1 gene and revealed that ALDH1A1 knockdown promoted apoptosis, repressed cell proliferation, and decreased progesterone secretion by yak LCs, potentially by regulating the mRNA expression of genes related to proliferation, apoptosis, and progesterone synthesis and secretion.


Assuntos
Família Aldeído Desidrogenase 1 , Células Lúteas , Retinal Desidrogenase , Animais , Feminino , Bovinos/genética , Células Lúteas/metabolismo , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo , Família Aldeído Desidrogenase 1/genética , Família Aldeído Desidrogenase 1/metabolismo , Apoptose , Progesterona/metabolismo , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Proliferação de Células , Regulação da Expressão Gênica/fisiologia
2.
Theriogenology ; 209: 9-20, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37354760

RESUMO

Lysine-specific histone demethylase 2 (Kdm2a) is a regulatory factor of histone modifications that participates in gametogenesis and embryonic development. The mis-regulation of Kdm2a can lead to aberrant gene expression, thereby contributing to abnormal cell proliferation, differentiation, apoptosis, and tumorigenesis. However, due to the potential confounding effects that are secondary to the loss of Kdm2a function from the soma in existing whole-animal mutants, the in vivo function of Kdm2a in spermatogenesis for male fertility remains unknown. Herein, we focus on exploring the spatiotemporal expression profile and biological functions of Kdm2a in the spermatogenesis and fertility of male mice. A testis-specific knockout Kdm2a model (Kdm2a cKO) was established by using the Stra8-Cre/loxP recombinase system to explore the roles of Kdm2a in male fertility. Our results showed that Kdm2a was ubiquitously expressed and dynamically distributed in multiple tissues and cell types in the testis of mice. Surprisingly, Kdm2a-deficient adult males were completely fertile and comparable with their control (Kdm2aflox/flox) counterparts. Despite the significantly reduced total number of sperm and density of seminiferous tubules in Kdm2a cKO testis accompanied by the degeneration of spermatogenesis, the fertilization ability and embryonic developmental competence of the Kdm2a cKO were comparable with those of their control littermates, suggesting that Kdm2a disruption did not markedly affect male fertility, at least during younger ages. Furthermore, Kdm2a homozygous mutants exhibited a lower total number and motility of sperm than the control group and showed notably affected serum 17ß-estradiol concentration. Interestingly, the transcriptome sequencing revealed that the loss of Kdm2a remarkably upregulated the expression level of Kdm2b. This effect, in turn, may induce compensative effects in the case of Kdm2a deficiency to maintain normal male reproduction. Together, our results reveal that Kdm2a shows spatiotemporal expression during testicular development and that its loss is insufficient to compromise the production of spermatozoa completely. The homologous Kdm2b gene might compensate for the loss of Kdm2a. Our work provides a novel Kdm2a cKO mouse allowing for the efficient deletion of Kdm2a in a testis-specific manner, and further investigated the biological function of Kdm2a and the compensatory effects of Kdm2b. Our study will advance our understanding of underlying mechanisms in spermatogenesis and male fertility.


Assuntos
Fertilidade , Espermatogênese , Testículo , Animais , Masculino , Camundongos , Fertilidade/genética , Camundongos Knockout , Sêmen , Espermatogênese/genética , Espermatozoides/metabolismo , Testículo/metabolismo
3.
Theriogenology ; 209: 60-75, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37356280

RESUMO

Histone methylation plays an essential role in oocyte growth and preimplantation embryonic development. The modification relies on histone methyl-transferases and demethylases, and one of these, lysine-specific demethylase 2a (Kdm2a), is responsible for modulating histone methylation during oocyte and early embryonic development. The mechanism of how Kdm2a deficiency disrupts early embryonic development and fertility remains elusive. To determine if maternally deposited Kdm2a is required for preimplantation embryonic development, the expression profile of Kdm2a during early embryos was detected via immunofluorescence staining and RT-qPCR. The Kdm2a gene in oocytes was specifically deleted with the Zp3-Cre/LoxP system and the effects of maternal Kdm2a loss were studied through a comprehensive range of female reproductive parameters including fertilization, embryo development, and the number of births. RNA transcriptome sequencing was performed to determine differential mRNA expression, and the interaction between Kdm2a and the PI3K/Akt pathway was studied with a specific inhibitor and activator. Our results revealed that Kdm2a was continuously expressed in preimplantation embryos and loss of maternal Kdm2a suppressed the morula-to-blastocyst transition, which may have been responsible for female subfertility. After the deletion of Kdm2a, the global H3K36me2 methylation in mutant embryos was markedly increased, but the expression of E-cadherin decreased significantly in morula embryos compared to controls. Mechanistically, RNA-seq analysis revealed that deficiency of maternal Kdm2a altered the mRNA expression profile, especially in the PI3K/Akt signaling pathway. Interestingly, the addition of a PI3K/Akt inhibitor (LY294002) to the culture medium blocked embryo development at the stage of morula; however, the developmental block caused by maternal Kdm2a loss was partially rescued with a PI3K/Akt activator (SC79). In summary, our results indicate that loss of Kdm2a influences the transcriptome profile and disrupts the PI3K/Akt signaling pathway during the development of preimplantation embryo. This can result in embryo block at the morula stage and female subfertility, which suggests that maternal Kdm2a is a potential partial redundancy with other genes encoding enzymes in the dynamics of early embryonic development. Our results provide further insight into the role of histone modification, especially on Kdm2a, in preimplantation embryonic development in mice.


Assuntos
Infertilidade Feminina , Animais , Feminino , Camundongos , Gravidez , Blastocisto , Caderinas/metabolismo , Caderinas/farmacologia , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Infertilidade Feminina/veterinária , Mórula , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais
4.
Reprod Domest Anim ; 58(1): 129-140, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36178063

RESUMO

The aims of this study were to analyse the protein phosphatase 1 regulatory subunit 11 (PPP1R11) expression and cellular localization in yak follicles and investigate its effects on cell proliferation, apoptosis and oestrogen secretion in granulosa cells (GCs). Ten healthy and non-pregnant female yaks (4-year-old) were used as experimental animals. The mRNA relative expression level of PPP1R11 in GCs from small (<3.0 mm), medium (3.0-5.9 mm) and large (6.0-9.0 mm) follicles was detected by RT-qPCR, and the cellular localization of PPP1R11 protein was detected by immunohistochemistry staining (IHC). After isolation, culture and identification of yak GCs in vitro, si-PPP1R11 and si-NC (negative control) were transfected into GCs. RT-qPCR and immunofluorescence staining were used to evaluate the interference efficiency, and ELISA was performed to detect oestrogen concentration. Then, EdU staining and TUNEL staining were conducted to analyse cell proliferation and apoptosis. In addition, the oestrogen synthesis, proliferation- and apoptosis-related genes were detected by RT-qPCR after knockdown PPP1R11. The results showed that PPP1R11 is mainly located in ovarian GCs, and the expression levels of PPP1R11 in GCs from large follicles were significantly higher than that from medium and small follicles. Transfection of si-PPP1R11 into GCs could significantly inhibit the expression of PPP1R11. Interestingly, the oestrogen secretion ability and the expression level of oestrogen pathway-related genes (STAR, CYP11A1, CYP19A1 and HSD17B1) were also significantly downregulated. Moreover, the proportion of positive cells was decreased, and cellular proliferation-related genes (PCNA, CCNB1 and CDC25A) were significantly downregulated after knockdown PPP1R11. However, the proportion of apoptotic cells was increased, and apoptosis-related genes (BAX, CASP3 and P53) were significantly upregulated. Taken together, this study was the first revealed the expression and cellular localization of PPP1R11 in yak follicles. Interference PPP1R11 could reduce oestrogen secretion, inhibit proliferation and promote apoptosis in GCs, which provided a basis for further studies on the regulatory mechanism of PPP1R11 in follicle development.


Assuntos
Células da Granulosa , Ovário , Feminino , Bovinos , Animais , Proteína Fosfatase 1/metabolismo , Células da Granulosa/metabolismo , Ovário/metabolismo , RNA Mensageiro/metabolismo , Apoptose/fisiologia , Estrogênios/metabolismo
5.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36233308

RESUMO

The methylation status of histones plays a crucial role in many cellular processes, including follicular and oocyte development. Lysine-specific demethylase 2a (KDM2a) has been reported to be closely associated with gametogenesis and reproductive performance, but the specific function and regulatory mechanism have been poorly characterized in vivo. We found KDM2a to be highly expressed in growing follicles and oocytes of mice in this study. To elucidate the physiological role of Kdm2a, the zona pellucida 3-Cre (Zp3-Cre)/LoxP system was used to generate an oocyte Kdm2a conditional knockout (Zp3-Cre; Kdm2aflox/flox, termed Kdm2a cKO) model. Our results showed that the number of pups was reduced by approximately 50% in adult Kdm2a cKO female mice mating with wildtype males than that of the control (Kdm2aflox/flox) group. To analyze the potential causes, the ovaries of Kdm2a cKO mice were subjected to histological examination, and results indicated an obvious difference in follicular development between Kdm2a cKO and control female mice and partial arrest at the primary antral follicle stage. The GVBD and matured rates of oocytes were also compromised after conditional knockout Kdm2a, and the morphological abnormal oocytes increased. Furthermore, the level of 17ß-estradiol of Kdm2a cKO mice was only 60% of that in the counterparts, and hormone sensitivity decreased as the total number of ovulated and matured oocytes decreased after superovulation. After deletion of Kdm2a, the patterns of H3K36me2/3 in GVBD-stage oocytes were remarkedly changed. Transcriptome sequencing showed that the mRNA expression profiles in Kdm2a cKO oocytes were significantly different, and numerous differentially expressed genes were involved in pathways regulating follicular and oocyte development. Taken together, these results indicated that the oocyte-specific knockout Kdm2a gene led to female subfertility, suggesting the crucial role of Kdm2a in epigenetic modification and follicular and oocyte development.


Assuntos
Histonas , Histona Desmetilases com o Domínio Jumonji , Animais , Estradiol/metabolismo , Feminino , Fertilidade/genética , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Lisina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Oócitos/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA