RESUMO
OBJECTIVE: To determine the distal resection margin in sphincter-sparing surgery in patients with low rectal cancer based on imaging of large pathological sections. METHODS: Patients who underwent sphincter-sparing surgery for ultralow rectal cancer at Guangxi Medical University Cancer Hospital within the period from January 2016 to March 2022 were tracked and observed. The clinical and pathological data of the patients were collected and analyzed. The EVOS fluorescence automatic cell imaging system was used for imaging large pathological sections. Follow-up patient data were acquired mainly by sending the patients letters and contacting them via phone calls, and during outpatient visits. RESULTS: A total of 46 patients (25 males, 21 females) aged 27 to 86 years participated in the present study. Regarding clinical staging, there were 9, 10, 16, and 10 cases with stages I, II, III, and IV low rectal cancer, respectively. The surgical time was 273.82â ±â 111.51 minutes, the blood loss was 123.78â ±â 150.91 mL, the postoperative exhaust time was 3.67â ±â 1.85 days, and the postoperative discharge time was 10.36â ±â 5.41 days. There were 8 patients with complications, including 3 cases of pulmonary infection, 2 cases of intestinal obstruction, one case of pleural effusion, and one case of stoma necrosis. The longest and shortest distal resection margins (distances between the cutting edges and the tumor edges) were 3 cm and 1 cm, respectively. The minimum length of the extension areas of the tumor lesions in the 46 images of large pathological sections was 0.1 mm, and the maximum length was 15 mm. Among the tumor lesions, 91.30% (42/46) had an extension area length of ≤5 mm, and 97.83% (45/46) had an extension area length of ≤10 mm. The length of the extension zone was not related to clinical pathological parameters (Pâ >â .05). CONCLUSION: In the vast majority of cases, the distal resection margin was at least 1 cm; thus, "No Evidence of Disease" could have been achieved. Additional high-powered randomized trials are needed to confirm the results of the present study.
Assuntos
Margens de Excisão , Neoplasias Retais , Humanos , Neoplasias Retais/cirurgia , Neoplasias Retais/patologia , Neoplasias Retais/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Adulto , Idoso de 80 Anos ou mais , Estadiamento de Neoplasias , Tratamentos com Preservação do Órgão/métodos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Duração da CirurgiaRESUMO
Alpha-fetoprotein (AFP) is a glycoprotein that plays an important role in immune regulation with critical involvement in early human development and maintaining the immune balance during pregnancy. Postfetal development, the regulatory mechanisms controlling AFP undergo a shift and AFP gene transcription is suppressed. Instead, these enhancers refocus their activity to maintain albumin gene transcription throughout adulthood. During the postnatal period, AFP expression can increase in the setting of hepatocyte injury, regeneration, and malignant transformation. It is the first oncoprotein discovered and is routinely used as part of a screening strategy for HCC. AFP has been shown to be a powerful prognostic biomarker, and multiple HCC prognosis models confirmed the independent prognostic utility of AFP. AFP is also a useful predictive biomarker for monitoring the treatment response of HCC. In addition to its role as a biomarker, AFP plays important roles in immune modulation to promote tumorigenesis and thus has been investigated as a therapeutic target in HCC. In this review article, we aim to provide an overview of AFP, encompassing the discovery, biological role, and utility as an HCC biomarker in combination with other biomarkers and how it impacts clinical practice and future direction.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Adulto , Feminino , Humanos , Gravidez , alfa-Fetoproteínas/genética , Carcinogênese/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Hepatócitos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genéticaRESUMO
BACKGROUND: Placenta accreta spectrum disorders are associated with severe maternal morbidity and mortality. Placenta accreta spectrum disorders involve excessive adherence of the placenta preventing separation at birth. Traditionally, this condition has been attributed to excessive trophoblast invasion; however, an alternative view is a fundamental defect in decidual biology. OBJECTIVE: This study aimed to gain insights into the understanding of placenta accreta spectrum disorder by using single-cell and spatially resolved transcriptomics to characterize cellular heterogeneity at the maternal-fetal interface in placenta accreta spectrum disorders. STUDY DESIGN: To assess cellular heterogeneity and the function of cell types, single-cell RNA sequencing and spatially resolved transcriptomics were used. A total of 12 placentas were included, 6 placentas with placenta accreta spectrum disorder and 6 controls. For each placenta with placenta accreta spectrum disorder, multiple biopsies were taken at the following sites: placenta accreta spectrum adherent and nonadherent sites in the same placenta. Of note, 2 platforms were used to generate libraries: the 10× Chromium and NanoString GeoMX Digital Spatial Profiler for single-cell and spatially resolved transcriptomes, respectively. Differential gene expression analysis was performed using a suite of bioinformatic tools (Seurat and GeoMxTools R packages). Correction for multiple testing was performed using Clipper. In situ hybridization was performed with RNAscope, and immunohistochemistry was used to assess protein expression. RESULTS: In creating a placenta accreta cell atlas, there were dramatic difference in the transcriptional profile by site of biopsy between placenta accreta spectrum and controls. Most of the differences were noted at the site of adherence; however, differences existed within the placenta between the adherent and nonadherent site of the same placenta in placenta accreta. Among all cell types, the endothelial-stromal populations exhibited the greatest difference in gene expression, driven by changes in collagen genes, namely collagen type III alpha 1 chain (COL3A1), growth factors, epidermal growth factor-like protein 6 (EGFL6), and hepatocyte growth factor (HGF), and angiogenesis-related genes, namely delta-like noncanonical Notch ligand 1 (DLK1) and platelet endothelial cell adhesion molecule-1 (PECAM1). Intraplacental tropism (adherent versus non-adherent sites in the same placenta) was driven by differences in endothelial-stromal cells with notable differences in bone morphogenic protein 5 (BMP5) and osteopontin (SPP1) in the adherent vs nonadherent site of placenta accreta spectrum. CONCLUSION: Placenta accreta spectrum disorders were characterized at single-cell resolution to gain insight into the pathophysiology of the disease. An atlas of the placenta at single cell resolution in accreta allows for understanding in the biology of the intimate maternal and fetal interaction. The contributions of stromal and endothelial cells were demonstrated through alterations in the extracellular matrix, growth factors, and angiogenesis. Transcriptional and protein changes in the stroma of placenta accreta spectrum shift the etiologic explanation away from "invasive trophoblast" to "loss of boundary limits" in the decidua. Gene targets identified in this study may be used to refine diagnostic assays in early pregnancy, track disease progression over time, and inform therapeutic discoveries.
Assuntos
Descolamento Prematuro da Placenta , Placenta Acreta , Doenças Placentárias , Gravidez , Feminino , Recém-Nascido , Humanos , Placenta Acreta/terapia , Células Endoteliais , Placenta/patologia , Doenças Placentárias/patologia , Peptídeos e Proteínas de Sinalização Intercelular , Decídua/patologia , Endotélio/patologiaRESUMO
It is well-established that the combined use of nanostructured substrates and immunoaffinity agents can enhance the cell-capture performance of the substrates, thus offering a practical solution to effectively capture circulating tumor cells (CTCs) in peripheral blood. Developing along this strategy, this study first demonstrated a top-down approach for the fabrication of tetrahedral DNA nanostructure (TDN)-NanoGold substrates through the hierarchical integration of three functional constituents at various length-scales: a macroscale glass slide, sub-microscale self-organized NanoGold, and nanoscale self-assembled TDN. The TDN-NanoGold substrates were then assembled with microfluidic chaotic mixers to give TDN-NanoGold Click Chips. In conjunction with the use of copper (Cu)-catalyzed azide-alkyne cycloaddition (CuAAC)-mediated CTC capture and restriction enzyme-triggered CTC release, TDN-NanoGold Click Chips allow for effective enumeration and purification of CTCs with intact cell morphologies and preserved molecular integrity. To evaluate the clinical utility of TDN-NanoGold Click Chips, we used these devices to isolate and purify CTCs from patients with human papillomavirus (HPV)-positive (+) head and neck squamous cell carcinoma (HNSCC). The purified HPV(+) HNSCC CTCs were then subjected to RT-ddPCR testing, allowing for detection of E6/E7 oncogenes, the characteristic molecular signatures of HPV(+) HNSCC. We found that the resulting HPV(+) HNSCC CTC counts and E6/E7 transcript copy numbers are correlated with the treatment responses in the patients, suggesting the potential clinical utility of TDN-NanoGold Click Chips for non-invasive diagnostic applications of HPV(+) HNSCC.
RESUMO
Exosomes are extracellular vesicles that modulate essential physiological and pathological signals. Communication between cancer cells that express the von Hippel-Lindau (VHL) tumor suppressor gene and those that do not is instrumental to distant metastasis in renal cell carcinoma (RCC). In a novel metastasis model, VHL(-) cancer cells are the metastatic driver, while VHL(+) cells receive metastatic signals from VHL(-) cells and undergo aggressive transformation. This study investigates whether exosomes could be mediating metastatic crosstalk. Exosomes isolated from paired VHL(+) and VHL(-) cancer cell lines were assessed for physical, biochemical, and biological characteristics. Compared to the VHL(+) cells, VHL(-) cells produce significantly more exosomes that augment epithelial-to-mesenchymal transition (EMT) and migration of VHL(+) cells. Using a Cre-loxP exosome reporter system, the fluorescent color conversion and migration were correlated with dose-dependent delivery of VHL(-) exosomes. VHL(-) exosomes even induced a complete cascade of distant metastasis when added to VHL(+) tumor xenografts in a duck chorioallantoic membrane (dCAM) model, while VHL(+) exosomes did not. Therefore, this study supports that exosomes from VHL(-) cells could mediate critical cell-to-cell crosstalk to promote metastasis in RCC.
Assuntos
Carcinoma de Células Renais , Exossomos , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Neoplasias Renais/metabolismo , Exossomos/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismoRESUMO
Optimizing outcomes in prostate cancer (PCa) requires precision in characterization of disease status. This effort was directed at developing a PCa extracellular vesicle (EV) Digital Scoring Assay (DSA) for detecting metastasis and monitoring progression of PCa. PCa EV DSA is comprised of an EV purification device (i.e., EV Click Chip) and reverse-transcription droplet digital PCR that quantifies 11 PCa-relevant mRNA in purified PCa-derived EVs. A Met score was computed for each plasma sample based on the expression of the 11-gene panel using the weighted Z score method. Under optimized conditions, the EV Click Chips outperformed the ultracentrifugation or precipitation method of purifying PCa-derived EVs from artificial plasma samples. Using PCa EV DSA, the Met score distinguished metastatic (n = 20) from localized PCa (n = 20) with an area under the receiver operating characteristic curve of 0.88 (95% CI:0.78-0.98). Furthermore, longitudinal analysis of three PCa patients showed the dynamics of the Met scores reflected clinical behavior even when disease was undetectable by imaging. Overall, a sensitive PCa EV DSA was developed to identify metastatic PCa and reveal dynamic disease states noninvasively. This assay may complement current imaging tools and blood-based tests for timely detection of metastatic progression that can improve care for PCa patients.
RESUMO
Hepatocellular carcinoma (HCC) is among the leading causes of cancer incidence and mortality worldwide. Surveillance of individuals with cirrhosis or other conditions that confer a high risk of HCC development is essential for early detection and improved overall survival. Biannual ultrasonography with or without alpha-fetoprotein is widely recommended as the standard method for HCC surveillance, but it has limited sensitivity in early disease and may be inadequate in certain individuals. This review article will provide a comprehensive overview of the current landscape of HCC surveillance, including the rationale and indications for HCC surveillance, standard methods for HCC surveillance, and their strengths/limitations. Alternative surveillance methods such as the role of cross-sectional imaging, emerging circulating biomarkers, as well as the problem of under-utilization of HCC surveillance and surveillance-related harms will also be discussed in this review.
RESUMO
Early cancer detection by cell-free DNA faces multiple challenges: low fraction of tumor cell-free DNA, molecular heterogeneity of cancer, and sample sizes that are not sufficient to reflect diverse patient populations. Here, we develop a cancer detection approach to address these challenges. It consists of an assay, cfMethyl-Seq, for cost-effective sequencing of the cell-free DNA methylome (with > 12-fold enrichment over whole genome bisulfite sequencing in CpG islands), and a computational method to extract methylation information and diagnose patients. Applying our approach to 408 colon, liver, lung, and stomach cancer patients and controls, at 97.9% specificity we achieve 80.7% and 74.5% sensitivity in detecting all-stage and early-stage cancer, and 89.1% and 85.0% accuracy for locating tissue-of-origin of all-stage and early-stage cancer, respectively. Our approach cost-effectively retains methylome profiles of cancer abnormalities, allowing us to learn new features and expand to other cancer types as training cohorts grow.
Assuntos
Ácidos Nucleicos Livres , Neoplasias Gástricas , Ácidos Nucleicos Livres/genética , Análise Custo-Benefício , Detecção Precoce de Câncer , Epigenoma , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genéticaRESUMO
Serum alpha-fetoprotein and radiologic imaging are the most commonly used tests for early diagnosis and dynamic monitoring of treatment response in hepatocellular carcinoma (HCC). However, the accuracy of these tests is limited, and they may not reflect the underlying biology of the tumor. Thus, developing highly accurate novel HCC biomarkers reflecting tumor biology is a clinically unmet need. Circulating tumor cells (CTCs) have long been proposed as a noninvasive biomarker in clinical oncology. Most CTC assays utilize immunoaffinity-based, size-based, and/or enrichment-free mechanisms followed by immunocytochemical staining to characterize CTCs. The prognostic value of HCC CTC enumeration has been extensively validated. Subsets of CTCs expressing mesenchymal markers are also reported to have clinical significance. In addition, researchers have been devoting their efforts to molecular characterizations of CTCs (e.g. genetics and transcriptomics) as molecular profiling can offer a more accurate readout and provide biological insights. As new molecular profiling techniques, such as digital polymerase chain reaction, are developed to detect minimal amounts of DNA/RNA, several research groups have established HCC CTC digital scoring systems to quantify clinically relevant gene panels. Given the versatility of CTCs to provide intact molecular and functional data that reflects the underlying tumor, CTCs have great potential as a noninvasive biomarker in HCC. Large-scale, prospective studies for HCC CTCs with a standardized protocol are necessary for successful clinical translation.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Neoplásicas Circulantes , Biomarcadores , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Células Neoplásicas Circulantes/patologia , Medicina de Precisão , Estudos ProspectivosRESUMO
Well-preserved molecular cargo in circulating extracellular vesicles (EVs) offers an ideal material for detecting oncogenic gene alterations in cancer patients, providing a noninvasive diagnostic solution for detection of disease status and monitoring treatment response. Therefore, technologies that conveniently isolate EVs with sufficient efficiency are desperately needed. Here, a lipid labeling and click chemistry-based EV capture platform ("Click Beads"), which is ideal for EV message ribonucleic acid (mRNA) assays due to its efficient, convenient, and rapid purification of EVs, enabling downstream molecular quantification using reverse transcription digital polymerase chain reaction (RT-dPCR) is described and demonstrated. Ewing sarcoma protein (EWS) gene rearrangements and kirsten rat sarcoma viral oncogene homolog (KRAS) gene mutation status are detected and quantified using EVs isolated by Click Beads and matched with those identified in biopsy specimens from Ewing sarcoma or pancreatic cancer patients. Moreover, the quantification of gene alterations can be used for monitoring treatment responses and disease progression.
Assuntos
Vesículas Extracelulares , Sarcoma de Ewing , Carcinogênese/genética , Química Click , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Genes ras , Humanos , Lipídeos , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismoRESUMO
PURPOSE: This study aimed to determine the potential application of the protein phosphatase 1 regulatory subunit 3 (PPP1R3B) gene as a prognostic marker in stomach adenocarcinoma (STAD), as well as its potential mediating biological processes and pathways. MATERIALS AND METHODS: Differential expression analyses were performed using the TIMER2.0 and UALCAN databases. Complete RNA-seq data and other relevant clinical and survival data were acquired from The Cancer Genome Atlas (TCGA). Univariate survival analyses, Cox regression modelling, and Kaplan-Meier curves were implemented to investigate the associations between PPP1R3B gene expression and clinical pathologic features. A genome wide gene set enrichment analysis (GSEA) was conducted to define the underlying molecular mechanisms mediating the observed associations between the PPP1R3B gene and STAD development. RESULTS: We found that PPP1R3B was overexpressed in STAD tissues, and that higher PPP1R3B expression correlated with worse prognoses in patients with STAD. Comprehensive survival analyses suggested that PPP1R3B might be an independent predictive factor for survival time in patients with STAD. The prognostic relationship between PPP1R3B and STAD was also verified using Kaplan-Meier curves. Patients with higher PPP1R3B levels had a shorter clinical survival time on average. Additionally, a GSEA demonstrated that PPP1R3B might be involved in multiple biological processes and pathways. CONCLUSION: Our findings demonstrate that the PPP1R3B gene has utility as a potential molecular marker for STAD prognoses.
RESUMO
Circulating tumor cell (CTC) clusters are present in cancer patients with severe metastasis, resulting in poor clinical outcomes. However, CTC clusters have not been studied as extensively as single CTCs, and the clinical utility of CTC clusters remains largely unknown. In this study, we aim sought to explore the feasibility of NanoVelcro Chips to simultaneously detect both single CTCs and CTC clusters with negligible perturbation to their intrinsic properties in neuroendocrine tumors (NETs). We discovered frequent CTC clusters in patients with advanced NETs and examined their potential roles, together with single NET CTCs, as novel biomarkers of patient response following peptide receptor radionuclide therapy (PRRT). We observed dynamic changes in both total NET CTCs and NET CTC cluster counts in NET patients undergoing PRRT which correlated with clinical outcome. These preliminary findings suggest that CTC clusters, along with single CTCs, offer a potential non-invasive option to monitor the treatment response in NET patients undergoing PRRT.
Assuntos
Técnicas Biossensoriais , Células Neoplásicas Circulantes , Tumores Neuroendócrinos , Biomarcadores Tumorais , Humanos , Metástase Neoplásica , Células Neoplásicas Circulantes/patologiaRESUMO
Numerous studies in hepatocellular carcinoma (HCC) have proposed tissue-based gene signatures for individualized prognostic assessments. Here, we develop a novel circulating tumor cell (CTC)-based transcriptomic profiling assay to translate tissue-based messenger RNA (mRNA) signatures into a liquid biopsy setting for noninvasive HCC prognostication. The HCC-CTC mRNA scoring system combines the NanoVelcro CTC Assay for enriching HCC CTCs and the NanoString nCounter platform for quantifying the HCC-CTC Risk Score (RS) panel in enriched HCC CTCs. The prognostic role of the HCC-CTC RS was assessed in The Cancer Genome Atlas (TCGA) HCC cohort (n = 362) and validated in an independent clinical CTC cohort (n = 40). The HCC-CTC RS panel was developed through our integrated data analysis framework of 8 HCC tissue-based gene signatures and identified the top 10 prognostic genes (discoidin domain receptor tyrosine kinase 1 [DDR1], enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase [EHHADH], androgen receptor [AR], lumican [LUM], hydroxysteroid 17-beta dehydrogenase 6[HSD17B6], prostate transmembrane protein, androgen induced 1 [PMEPA1], tsukushi, small leucine rich proteoglycan [TSKU], N-terminal EF-hand calcium binding protein 2 [NECAB2], ladinin 1 [LAD1], solute carrier family 27 member 5 [SLC27A5]) highly expressed in HCC with low expressions in white blood cells. The panel accurately discriminated overall survival in TCGA HCC cohort (hazard ratio [HR], 2.0; 95% confidence interval [CI], 1.4-2.9). The combined use of the scoring system and HCC-CTC RS panel successfully distinguished artificial blood samples spiked with an aggressive HCC cell type, SNU-387, from those spiked with PLC/PRF/5 cells (P = 0.02). In the CTC validation cohort (n = 40), HCC-CTC RS remained an independent predictor of survival (HR, 5.7; 95% CI, 1.5-21.3; P = 0.009) after controlling for Model for End-Stage Liver Disease score, Barcelona Clinic Liver Cancer stage, and CTC enumeration count. Our study demonstrates a novel interdisciplinary approach to translate tissue-based gene signatures into a liquid biopsy setting. This noninvasive approach will allow real-time disease profiling and dynamic prognostication of HCC.
Assuntos
Carcinoma Hepatocelular , Doença Hepática Terminal , Neoplasias Hepáticas , Transplante de Fígado , Células Neoplásicas Circulantes , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Células Neoplásicas Circulantes/metabolismo , Prognóstico , RNA Mensageiro/genética , Índice de Gravidade de DoençaRESUMO
The expression of carcinoembryonic protein (CEA) is an important biological marker and therapeutic target in colorectal cancer (CRC). CEA expression heterogeneity confers resistance to CEA-targeting immunotherapy antibodies. Thus, quantification of the CEA-positive cell ratio among all tumor cells would be important in identifying patients that would benefit from CEA-targeted therapies. However, the proportion of tumor cells that express CEA within primary and metastasized tumors at different sites has not been studied. Therefore, the present study aimed to determine CEA positive cell proportion in paired CRC primary foci, liver metastases, and lymph node (LN) metastases, and whether proportion of CEA positive cell differs among colorectal cancer primary foci, liver metastases, and LN metastases from 26 patients. The CEA expression was detected by immunohistochemical assay. Then we set up a quantification approach to quantify the proportion of CEA-positive cells based on the TissueGnostics (TG) system. Then the proportion of CEA positive cells were measured and compared among primary foci, liver metastases, and LN metastases. As a result, the proportion of CEA positive tumor cells was slightly higher in liver metastases than in primary foci (89.8% ± 2.71% vs 82.1% ± 5.05%, P < 0.001). The proportion of CEA-positive cells was significantly lower in LN metastases than in primary foci (82.3% ± 4.32% vs 70.28% ± 5.04%, P < 0.001). In 8 cases with matched CRC primary foci, liver metastases, and LN metastases, the proportions of CEA proportion in liver metastasis was the highest, followed by primary foci and LNs metastasis. In conclusion, this study provided an new approach for quantification of CEA positive cell in tumors and proved the percentage of CEA-positive cells varied in different metastases.
Assuntos
Adenocarcinoma/metabolismo , Antígeno Carcinoembrionário/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Hepáticas/metabolismo , Linfonodos/metabolismo , Adenocarcinoma/secundário , Adulto , Idoso , Neoplasias Colorretais/patologia , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/secundário , Metástase Linfática , Masculino , Pessoa de Meia-IdadeRESUMO
Transcriptomic profiling of tumor tissues introduces a large database, which has led to improvements in the ability of cancer diagnosis, treatment, and prevention. However, performing tumor transcriptomic profiling in the clinical setting is very challenging since the procurement of tumor tissues is inherently limited by invasive sampling procedures. Here, we demonstrated the feasibility of purifying hepatocellular carcinoma (HCC) circulating tumor cells (CTCs) from clinical patient samples with improved molecular integrity using Click Chips in conjunction with a multimarker antibody cocktail. The purified CTCs were then subjected to mRNA profiling by NanoString nCounter platform, targeting 64 HCC-specific genes, which were generated from an integrated data analysis framework with 8 tissue-based prognostic gene signatures from 7 publicly available HCC transcriptomic studies. After bioinformatics analysis and comparison, the HCC CTC-derived gene signatures showed high concordance with HCC tissue-derived gene signatures from TCGA database, suggesting that HCC CTCs purified by Click Chips could enable the translation of HCC tissue molecular profiling into a noninvasive setting.
RESUMO
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and one of the leading causes of cancer-related death worldwide. Despite the improvements in surveillance and treatment, the prognosis of HCC remains poor. Extracellular vesicles (EVs) are a heterogeneous group of phospholipid bilayer-enclosed particles circulating in the bloodstream and mediating intercellular communication. Emerging studies have shown that EVs play a crucial role in regulating the proliferation, immune escape, and metastasis of HCC. In addition, because EVs are present in the circulation at relatively early stages of disease, they are getting attention as an attractive biomarker for HCC detection. Over the past decade, dedicated efforts have been made to isolate EVs more efficiently and make them useful tools in different clinical settings. In this review article, we provide an overview of the EVs isolation methods and highlight the role of EVs as mediators in the pathogenesis and progression of HCC. Lastly, we summarize the potential applications of EVs in early-stage HCC detection.
RESUMO
OBJECTIVE: We aimed to explore the prognostic value of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) genes in gastric cancer (GC). METHODS: The RNA-sequencing (RNA-seq) expression data for 351 GC patients and other relevant clinical data were acquired from The Cancer Genome Atlas (TCGA). Survival analysis and a genome-wide gene set enrichment analysis (GSEA) were performed to define the underlying molecular value of the ADAMTS genes in GC development. Besides, qRT-PCR and immunohistochemistry were all employed to validate the relationship between the expression of these genes and GC patient prognosis. RESULTS: The Log rank test with both Cox regression and Kaplan-Meier survival analyses showed that ADAMTS6 expression profile correlated with the GC patients clinical outcome. Patients with a high expression of ADAMTS6 were associated with poor overall survival (OS). Comprehensive survival analysis of the ADAMTS genes suggests that ADAMTS6 might be an independent predictive factor for the OS in patients with GC. Besides, GSEA demonstrated that ADAMTS6 might be involved in multiple biological processes and pathways, such as the vascular endothelial growth factor A (VEGFA), kirsten rat sarcoma viral oncogene (KRAS), tumor protein P53, c-Jun N-terminal kinase (JNK), cadherin (CDH1) or tumor necrosis factor (TNF) pathways. It was also confirmed by immunohistochemistry and qRT-PCR that ADAMTS6 is highly expressed in GC, which may be related to the prognosis of GC patients. CONCLUSION: In summary, our study demonstrated that ADAMTS6 gene could be used as a potential molecular marker for GC prognosis.