Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 20(1): 212, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35524270

RESUMO

A multifunctional nanoplatform with core-shell structure was constructed in one-pot for the synergistic photothermal, photodynamic, and chemotherapy against breast cancer. In the presence of gambogic acid (GA) as the heat-shock protein 90 (HSP90) inhibitor and the gold nanostars (AuNS) as the photothermal reagent, the assembly of Zr4+ with tetrakis (4-carboxyphenyl) porphyrin (TCPP) gave rise to the nanocomposite AuNS@ZrTCPP-GA (AZG), which in turn, further coated with PEGylated liposome (LP) to enhance the stability and biocompatibility, and consequently the antitumor effect of the particle. Upon cellular uptake, the nanoscale metal - organic framework (NMOF) of ZrTCPP in the resulted AuNS@ZrTCPP-GA@LP (AZGL) could be slowly degraded in the weak acidic tumor microenvironment to release AuNS, Zr4+, TCPP, and GA to exert the synergistic treatment of tumors via the combination of AuNS-mediated mild photothermal therapy (PTT) and TCPP-mediated photodynamic therapy (PDT). The introduction of GA serves to reduce the thermal resistance of the cell to re-sensitize PTT and the constructed nanoplatform demonstrated remarkable anti-tumor activity in vitro and in vivo. Our work highlights a facile strategy to prepare a pH-dissociable nanoplatform for the effective synergistic treatment of breast cancer.


Assuntos
Neoplasias da Mama , Estruturas Metalorgânicas , Nanocompostos , Fotoquimioterapia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Humanos , Lipossomos/uso terapêutico , Microambiente Tumoral , Xantonas
2.
PLoS Genet ; 17(4): e1009238, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33826602

RESUMO

ARID1A is a core DNA-binding subunit of the BAF chromatin remodeling complex, and is lost in up to 7% of all cancers. The frequency of ARID1A loss increases in certain cancer types, such as clear cell ovarian carcinoma where ARID1A protein is lost in about 50% of cases. While the impact of ARID1A loss on the function of the BAF chromatin remodeling complexes is likely to drive oncogenic gene expression programs in specific contexts, ARID1A also binds genome stability regulators such as ATR and TOP2. Here we show that ARID1A loss leads to DNA replication stress associated with R-loops and transcription-replication conflicts in human cells. These effects correlate with altered transcription and replication dynamics in ARID1A knockout cells and to reduced TOP2A binding at R-loop sites. Together this work extends mechanisms of replication stress in ARID1A deficient cells with implications for targeting ARID1A deficient cancers.


Assuntos
Replicação do DNA/genética , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , Neoplasias/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Fatores de Transcrição/genética , Proteínas Mutadas de Ataxia Telangiectasia , Montagem e Desmontagem da Cromatina/genética , DNA Helicases/genética , Humanos , Complexos Multiproteicos/genética , Neoplasias/patologia , Proteínas Nucleares/genética
3.
PLoS One ; 7(3): e32425, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22403658

RESUMO

BACKGROUND AND OBJECTIVES: N-Acetyltransferase (NAT) 2 is an important enzyme involved in the metabolism of different xenobiotics, including potential carcinogens, whose phenotypes were reported to be related to individual susceptibility to colorectal cancer (CRC). However, the results remain conflicting. To assess the relationship between NAT2 phenotypes and CRC risk, we performed this meta-analysis. METHODS: A comprehensive literature search was conducted to identify all case-control or cohort studies of NAT2 acetylator status on the susceptibility of CRC by searching of PubMed and EMBASE, up to May 20, 2011. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the association. RESULTS: A total of over 40,000 subjects from 40 published literatures were identified by searching the databases. No significantly elevated CRC risk in individuals with NAT2 slow acetylators compared with fast acetylators was found when all studies pooled (OR = 0.95, 95% CI: 0.87-1.04, I(2) = 52.6%). While three studies contributed to the source of heterogeneity were removed, there was still null result observed (OR = 0.96, 95% CI: 0.90-1.03, P = 0.17 for heterogeneity, I(2) = 17.8%). In addition, we failed to detect any associations in the stratified analyses by race, sex, source of controls, smoking status, genotyping methods or tumor localization. No publication bias was observed in this study. CONCLUSIONS: This meta-analysis suggests that the NAT2 phenotypes may not be associated with colorectal cancer development.


Assuntos
Arilamina N-Acetiltransferase/metabolismo , Neoplasias Colorretais/enzimologia , Acetilação , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Suscetibilidade a Doenças , Feminino , Humanos , Masculino , Fenótipo , Viés de Publicação , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA