Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int Immunopharmacol ; 130: 111708, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38394889

RESUMO

Immunoevasion has been a severe obstacle for the clinical treatment of breast cancer (BC). CD47, known as an anti-phagocytic molecule, plays a key role in governing the evasion of tumor cells from immune surveillance by interacting with signal-regulated protein α (SIRPα) on macrophages. Here, we report for the first time that miR-299-3p is a direct regulator of CD47 with tumor suppressive effects both in vitro and in vivo. miRNA expression profiles and overall survival of BC cohorts from the Cancer Genome Atlas, METABRIC, or GSE19783 datasets showed that miR-299-3p is downregulated in BC tissues and that BC patients with low levels of miR-299-3p have poorer prognoses. Using dual-luciferase reporter, qRT-PCR, Western blot, and phagocytosis assays, we proved that restoration of miR-299-3p can suppress CD47 expression by directly targeting the predicted seed sequence "CCCACAU" in its 3'-UTR, leading to phagocytosis of BC cells by macrophages, whereas miR-299-3p inhibition or deletion reversed this effect. Additionally, Gene Ontology (GO) analysis and a variety of confirmatory experiments revealed that miR-299-3p was inversely correlated with cell proliferation, migration, and the cell cycle process. Mechanistically, miR-299-3p can also directly target ABCE1, an essential ribosome recycling factor, alleviating these malignant phenotypes of BC cells. In vivo BC xenografts based on nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice further proved that restoration of miR-299-3p resulted in a significant suppression of tumorigenesis and a promotion of macrophage activation and infiltration. Overall, our study suggested that miR-299-3p is a potent inhibitor of CD47 and ABCE1 to exhibit bifunctional BC-suppressing effects through immune activation conjugated with malignant behavior inhibition in breast carcinogenesis and thus can potentially serve as a novel therapeutic target for BC.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Neoplasias da Mama , Antígeno CD47 , MicroRNAs , Evasão Tumoral , Animais , Feminino , Humanos , Camundongos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinogênese , Antígeno CD47/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Macrófagos/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/metabolismo , Fagocitose/genética , Fenótipo
2.
Acta Neuropathol ; 147(1): 6, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170217

RESUMO

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder, characterized by selective loss of motor neurons (MNs). A number of causative genetic mutations underlie the disease, including mutations in the fused in sarcoma (FUS) gene, which can lead to both juvenile and late-onset ALS. Although ALS results from MN death, there is evidence that dysfunctional glial cells, including oligodendroglia, contribute to neurodegeneration. Here, we used human induced pluripotent stem cells (hiPSCs) with a R521H or a P525L mutation in FUS and their isogenic controls to generate oligodendrocyte progenitor cells (OPCs) by inducing SOX10 expression from a TET-On SOX10 cassette. Mutant and control iPSCs differentiated efficiently into OPCs. RNA sequencing identified a myelin sheath-related phenotype in mutant OPCs. Lipidomic studies demonstrated defects in myelin-related lipids, with a reduction of glycerophospholipids in mutant OPCs. Interestingly, FUSR521H OPCs displayed a decrease in the phosphatidylcholine/phosphatidylethanolamine ratio, known to be associated with maintaining membrane integrity. A proximity ligation assay further indicated that mitochondria-associated endoplasmic reticulum membranes (MAM) were diminished in both mutant FUS OPCs. Moreover, both mutant FUS OPCs displayed increased susceptibility to ER stress when exposed to thapsigargin, and exhibited impaired mitochondrial respiration and reduced Ca2+ signaling from ER Ca2+ stores. Taken together, these results demonstrate a pathological role of mutant FUS in OPCs, causing defects in lipid metabolism associated with MAM disruption manifested by impaired mitochondrial metabolism with increased susceptibility to ER stress and with suppressed physiological Ca2+ signaling. As such, further exploration of the role of oligodendrocyte dysfunction in the demise of MNs is crucial and will provide new insights into the complex cellular mechanisms underlying ALS.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Humanos , Esclerose Lateral Amiotrófica/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Mutação , Oligodendroglia/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo
3.
Front Pharmacol ; 14: 1281411, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026974

RESUMO

Cardamine circaeoides Hook.f. & Thomson (CC), a herb of the genus Cardamine (family Brassicaceae), has a rich historical usage in China for both culinary and medicinal purposes. It is distinguished by its remarkable ability to hyperaccumulate selenium (Se). CC has demonstrated efficacy in the prevention of metabolic disorders. However, investigations into the effects of CC on asymptomatic hyperuricemia remain scarce. The objective of this study is to elucidate the mechanism by which CC aqueous extract (CCE) exerts its anti-hyperuricemic effects on asymptomatic hyperuricemic rats induced by potassium oxonate (PO) by integrating metabolomics and network pharmacological analysis. Asymptomatic hyperuricemia was induced by feeding rats with PO (1000 mg/kg) and CCE (0.75, 1.5, or 3 g/kg) once daily for 30 days. Various parameters, including body weight, uric acid (UA) levels, histopathology of renal tissue, and inflammatory factors (IL-1ß, IL-6, IL-8, and TNF-α) were assessed. Subsequently, metabolomic analysis of kidney tissues was conducted to explore the effects of CCE on renal metabolites and the related pathways. Furthermore, network pharmacology was employed to explicate the mechanism of action of CCE components identified through UPLC-Q-TOF-MS analysis. Finally, metabolomic and network-pharmacology analyses were performed to predict crucial genes dysregulated in the disease model and rescued by CCE, which were then subjected to verification by RT-qPCR. The findings revealed that CCE significantly inhibited the UA levels from the 21st day to the 30th day. Moreover, CCE exhibited significant inhibition of IL-1ß, IL-6, IL-8, and TNF-α levels in renal tissues. The dysregulation of 18 metabolites and the tyrosine, pyrimidine, cysteine, methionine, sphingolipid, and histidine metabolism pathways was prevented by CCE treatment. A joint analysis of targets predicted using the network pharmacology approach and the differential metabolites found in metabolics predicted 8 genes as potential targets of CCE, and 3 of them (PNP gene, JUN gene, and ADA gene) were verified at the mRNA level by RT-qPCR. We conclude that CCE has anti-hyperuricemia effects and alleviates renal inflammation in a rat model of hyperuricemia, and these efficacies are associated with the reversal of increased ADA, PNP, and JUN mRNA expression in renal tissues.

4.
Zhongguo Zhong Yao Za Zhi ; 48(11): 3032-3038, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37381961

RESUMO

This study aimed to investigate the anti-fatigue effect and mechanism of Lubian(Cervi Penis et Testis) on kidney Yin deficiency and kidney Yang deficiency mice. After one week of adaptive feeding, 88 healthy male Kunming mice were randomly divided into a blank group, a kidney Yin deficiency model group, a kidney Yin deficiency-Panacis Quinquefolii Radix(PQR) group, kidney Yin deficiency-Lubian treatment groups, a kidney Yang deficiency model group, a kidney Yang deficiency-Ginseng Radix et Rhizoma(GR) group, and kidney Yang deficiency-Lubian treatment groups, with eight mice in each group. The kidney Yin deficiency model and kidney Yang deficiency model were prepared by daily regular oral administration of dexamethasone acetate and hydrocortisone, respectively, and meanwhile, corresponding drugs were provided. The mice in the blank group received blank reagent. The treatment lasted 14 days. The exhaustive swimming time was measured 30 min after drug administration on the 14th day. On the 15th day, blood was collected from eyeballs and the serum was separated to determine the content of lactic acid(LD), blood urea nitrogen(BUN), lactate dehydrogenase(LDH), cyclic adenosine monophosphate(cAMP), and cyclic guanosine monophosphate(cGMP). The liver was dissected to determine the content of liver glycogen and the protein expression of phosphoinositide 3-kinase(PI3K) and protein kinase B(Akt). Compared with the kidney Yang deficiency model group, the kidney Yang deficiency-Lubian treatment groups showed increased body weight(P<0.05), relieved symptoms of Yang deficiency, decreased cGMP content(P<0.01), increased cAMP/cGMP(P<0.01), prolonged exhausted swimming time(P<0.01), reduced LD(P<0.01), elevated BUN content(P<0.01), increased liver glycogen content(P<0.01), and increased protein expression of PI3K and Akt in the liver(P<0.05). Compared with the kidney Yin deficiency model group, the kidney Yin deficiency-Lubian treatment groups showed increased body weight(P<0.01), relieved symptoms of Yin deficiency, increased content of cGMP(P<0.01), decreased cAMP/cGMP(P<0.01), prolonged exhausted swimming time(P<0.01), decreased LD(P<0.01), decreased BUN content(P<0.01), increased liver glycogen content(P<0.01), and increased protein expression of PI3K(P<0.05) and Akt in the liver(P<0.05). To sum up, Lubian can regulate Yin deficiency and Yang deficiency and increase glycogen synthesis by affecting the PI3K-Akt pathway, thereby exerting an anti-fatigue role.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Masculino , Camundongos , Animais , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Glicogênio Hepático , Deficiência da Energia Yang/tratamento farmacológico , Deficiência da Energia Yin/tratamento farmacológico , Rim , Peso Corporal
5.
Front Pharmacol ; 14: 1116081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817116

RESUMO

Uncontrolled angiogenesis is a common denominator underlying many deadly and debilitating diseases such as myocardial infarction, chronic wounds, cancer, and age-related macular degeneration. As the current range of FDA-approved angiogenesis-based medicines are far from meeting clinical demands, the vast reserve of natural products from traditional Chinese medicine (TCM) offers an alternative source for developing pro-angiogenic or anti-angiogenic modulators. Here, we investigated 100 traditional Chinese medicine-derived individual metabolites which had reported gene expression in MCF7 cell lines in the Gene Expression Omnibus (GSE85871). We extracted literature angiogenic activities for 51 individual metabolites, and subsequently analysed their predicted targets and differentially expressed genes to understand their mechanisms of action. The angiogenesis phenotype was used to generate decision trees for rationalising the poly-pharmacology of known angiogenesis modulators such as ferulic acid and curculigoside and validated by an in vitro endothelial tube formation assay and a zebrafish model of angiogenesis. Moreover, using an in silico model we prospectively examined the angiogenesis-modulating activities of the remaining 49 individual metabolites. In vitro, tetrahydropalmatine and 1 beta-hydroxyalantolactone stimulated, while cinobufotalin and isoalantolactone inhibited endothelial tube formation. In vivo, ginsenosides Rb3 and Rc, 1 beta-hydroxyalantolactone and surprisingly cinobufotalin, restored angiogenesis against PTK787-induced impairment in zebrafish. In the absence of PTK787, deoxycholic acid and ursodeoxycholic acid did not affect angiogenesis. Despite some limitations, these results suggest further refinements of in silico prediction combined with biological assessment will be a valuable platform for accelerating the research and development of natural products from traditional Chinese medicine and understanding their mechanisms of action, and also for other traditional medicines for the prevention and treatment of angiogenic diseases.

6.
Chin Med ; 18(1): 7, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641437

RESUMO

BACKGROUND: Pancreatic cancer is one of the most lethal cancers worldwide. Aidi injection (ADI) is a representative antitumor medication based on Chinese herbal injection, but its antitumor mechanisms are still poorly understood. MATERIALS AND METHODS: In this work, the subcutaneous xenograft model of human pancreatic cancer cell line Panc-1 was established in nude mice to investigate the anticancer effect of ADI in vivo. We then determined the components of ADI using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) and explored the possible molecular mechanisms against pancreatic cancer using network pharmacology. RESULTS: In vivo experiments, the volume, weight, and degree of histological abnormalities of implanted tumors were significantly lower in the medium and high concentration ADI injection groups than in the control group. Network pharmacology analysis identified four active components of ADI and seven key targets, TNF, VEGFA, HSP90AA1, MAPK14, CASP3, P53 and JUN. Molecular docking also revealed high affinity between the active components and the target proteins, including Astragaloside IV to P53 and VEGFA, Ginsenoside Rb1 to CASP3 and Formononetin to JUN. CONCLUSION: ADI could reduce the growth rate of tumor tissue and alleviate the structural abnormalities in tumor tissue. ADI is predicted to act on VEGFA, P53, CASP3, and JUN in ADI-mediated treatment of pancreatic cancer.

7.
Front Neurol ; 13: 828612, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873784

RESUMO

Mental health has become a new challenge in cancer treatment, with a high prevalence of depression in patients with cancer. Albiflorin (AF) and paeoniflorinn (PF) are isomers extracted from the root of Paeoniae Radix Alba (Baishao in Chinese), belonging to the monoterpene glycosides, and multiple studies have been conducted on their antidepression and anti-cancer effects. However, the effects of AF and PF on cancer-related depression are unclear. Therefore, the current study aims to investigate whether the two isomers are able to exert antidepressant-like effects and understand the underlying mechanisms in a rat model, established by combining irradiation with chronic restraint stress and solitary confinement. Our results demonstrate a significant regulation of AF and PF in the pharmacodynamic index, including the peripheral blood, organ index, behavioral traits, and HPA axis, relative to control rats. In serum and cerebral cortex metabonomics analysis, AF and PF showed a significantly restorative trend in abnormal biomarkers and regulating ether lipid metabolism, alanine, aspartate, glutamate metabolism, tryptophan metabolism, carnitine metabolism, arachidonic acid metabolism, arginine and proline metabolism pathway. Eight potential biomarkers were further screened by means of receiver operating characteristic (ROC) analysis. The data indicate that AF and PF could effectively ameliorate a depression-like state in the model rats, and the mechanism may be associated with the regulation of the neuroendocrine immune system and disrupted metabolic pathways. Further experiments are warranted to comprehensively evaluate the antidepressant effects of AF and PF in cancer-related depression. This study provides a better insight into the action mechanisms of antidepression of TCM, and provides a new perspective for the therapy of cancer-related depression.

8.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2509-2515, 2022 May.
Artigo em Chinês | MEDLINE | ID: mdl-35531698

RESUMO

A high-throughput screening machine learning model for mitochondrial function was constructed, and compounds of Aco-niti Lateralis Radix Praeparata were predicted. Deoxyaconitine with the highest score and benzoylmesaconine with the lowest score among the compounds screened by the model were selected for mitochondrial mechanism analysis. Mitochondrial function data were collected from PubChem and Tox21 databases. Random forest and gradient boosted decision tree algorithms were separately used for mo-deling, and ECFP4(extended connectivity fingerprint, up to four bonds) and Mordred descriptors were employed for training, respectively. Cross-validation test was carried out, and balanced accuracy(BA) and overall accuracy were determined to evaluate the performance of different combinations of models and obtain the optimal algorithm and hyperparameters for modeling. The data of Aconiti Lateralis Radix Praeparata compounds in TCMSP database were collected, and after prediction and screening by the constructed high-throughput screening machine learning model, deoxyaconitine and benzoylmesaconine were selected to measure mitochondrial membrane potential, reactive oxygen species(ROS) level and protein expression of B-cell lymphoma 2(Bcl-2), Bcl-2-associated X protein(Bax) and peroxisome proliferator-activated receptor-γ-coactivator 1α(PGC-1α). The results showed that the model constructed using gradient boosted decision tree+Mordred algorithm performed better, with a cross-validation BA of 0.825 and a test set accuracy of 0.811. Deoxyaconitine and benzoylmesaconine changed the ROS level(P<0.001), mitochondrial membrane potential(P<0.001), and protein expression of Bcl-2(P<0.001, P<0.01) and Bax(P<0.001), and deoxyaconitine increased the expression of PGC-1α protein(P<0.01). The high-throughput screening model for mitochondrial function constructed by gradient boosted decision tree+Mordred algorithm was more accurate than that by random forest+ECFP4 algorithm, which could be used to build an algorithm model for subsequent research. Deoxyaconitine and benzoylmesaconine affected mitochondrial function. However, deoxyaconitine with higher score also affected mitochondrial biosynthesis by regulating PGC-1α protein.


Assuntos
Aconitum , Medicamentos de Ervas Chinesas , Aconitum/química , Algoritmos , Medicamentos de Ervas Chinesas/química , Ensaios de Triagem em Larga Escala , Aprendizado de Máquina , Mitocôndrias , Espécies Reativas de Oxigênio , Proteína X Associada a bcl-2
9.
Med Chem ; 18(5): 589-601, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34463229

RESUMO

BACKGROUND: Breast cancer is the leading cause of cancer death in women. The current methods of chemotherapy for breast cancer generally have strong adverse reactions and drug resistance. Therefore, the discovery of novel anti-breast cancer lead compounds is urgently needed. OBJECTIVE: This study aimed to design and synthesize a series of 2-alkyl substituted fluorinated genistein analogues and evaluate their anti-breast cancer activity. METHODS: Target compounds were obtained in a multistep reaction synthesis. The anti-tumor activity of compounds I-1~I-35 was evaluated with MCF-7, MDA-MB-231, MDA-MB-435, and MCF-10A cell lines in vitro, with tamoxifen as the positive control. Molecular docking was used to study the interaction between the synthesized compounds and PI3K-gamma. RESULTS: A series of 2-alkyl substituted fluorinated genistein analogues was designed, synthesized, and screened for their bioactivity. Most of the compounds displayed better selectivity toward breast cancer cell lines as compared to tamoxifen. Among these analogues, I-2, I-3, I-4, I-9, I-15, and I-17 have the strongest selective inhibition of breast cancer cells. Compounds I-10, I-13, I-15, I-17, and I- 33 were found to have significant inhibitory effects on breast cancer cells. Molecular docking studies have shown that these compounds may act as PI3Kγ inhibitors and may further exhibit anti-breast cancer effects. CONCLUSION: Most of the newly synthesized compounds could highly, selectively inhibit breast cancer cell lines. The experimental results indicate that the synthesized analogs may also have obvious selective inhibitory effects on other malignant proliferation cancer cells.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Feminino , Genisteína/farmacologia , Genisteína/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
10.
J Immunol Res ; 2021: 6696606, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748291

RESUMO

BACKGROUND: Ganoderma lucidum has certain components with known pharmacological effects, including strengthening immunity and anti-inflammatory activity. G. lucidum seeds inherit all its biological characteristics. G. lucidum spore polysaccharide (GLSP) is the main active ingredient to enhance these effects. However, its specific biological mechanisms are not exact. Our research is aimed at revealing the specific biological mechanism of GLSP to enhance immunity and inhibit the growth of H22 hepatocellular carcinoma cells. METHODS: We extracted primary macrophages (Mø) from BALB/c mice and treated them with GLSP (800 µg/mL, 400 µg/mL, and 200 µg/mL) to observe its effects on macrophage polarization and cytokine secretion. We used GLSP and GLSP-intervened macrophage supernatant to treat H22 tumor cells and observed their effects using MTT and flow cytometry. Moreover, real-time fluorescent quantitative PCR and western blotting were used to observe the effect of GLSP-intervened macrophage supernatant on the PI3K/AKT and mitochondrial apoptosis pathways. RESULTS: In this study, GLSP promoted the polarization of primary macrophages to M1 type and the upregulation of some cytokines such as TNF-α, IL-1ß, IL-6, and TGF-ß1. The MTT assay revealed that GLSP+Mø at 400 µg/mL and 800 µg/mL significantly inhibited H22 cell proliferation in a dose-dependent manner. Flow cytometry analysis revealed that GLSP+Mø induced apoptosis and cell cycle arrest at the G2/M phase, associated with the expression of critical genes and proteins (PI3K, p-AKT, BCL-2, BAX, and caspase-9) that regulate the PI3K/AKT pathway and apoptosis. GLSP reshapes the tumor microenvironment by activating macrophages, promotes the polarization of primary macrophages to M1 type, and promotes the secretion of various inflammatory factors and cytokines. CONCLUSION: Therefore, as a natural nutrient, GLSP is a potential agent in hepatocellular carcinoma cell treatment and induction of apoptosis.


Assuntos
Carcinoma Hepatocelular/terapia , Polissacarídeos Fúngicos/metabolismo , Neoplasias Hepáticas/terapia , Macrófagos/imunologia , Reishi/imunologia , Animais , Apoptose , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos BALB C , Fosfatidilinositol 3-Quinases/metabolismo , Fitoterapia/tendências , Transdução de Sinais , Esporos Fúngicos , Células Th1/imunologia
11.
Chin J Integr Med ; 27(1): 62-69, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32447519

RESUMO

OBJECTIVE: To investigate the shared mechanisms of scutellarin in angina pectoris (AP) and ischemic stroke (IS) treatment. METHODS: A network pharmacology approach was used to detect the potential mechanisms of scutellarin in AP and IS treatment by target prediction, protein-protein interaction (PPI) data collection, network construction, network analysis, and enrichment analysis. Furthermore, molecular docking simulation was employed to analyze the interaction between scutellarin and core targets. RESULTS: Two networks were established, including a disease-target network and a PPI network of scutellarin targets against AP and IS. Network analysis showed that 14 targets, namely, AKT1, VEGFA, JUN, ALB, MTOR, ESR1, MAPK8, HSP90AA1, NOS3, SERPINE1, FGA, F2, FOXO3, and STAT1, might be the therapeutic targets of scutellarin in AP and IS. Among them, NOS3 and F2 were recognized as the core targets. Additionally, molecular docking simulation confifirmed that scutellarin exhibited a relatively high potential for binding to the active sites of NOS3 and F2. Furthermore, enrichment analysis indicated that scutellarin might exert a therapeutic role in both AP and IS by regulating several important pathways, such as coagulation cascades, mitogen-activated protein kinase (MAPK) signaling pathway, phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway, Toll-like receptor signaling pathway, hypoxia inducible factor-1 (HIF-1) signaling pathway, forkhead box O (FoxO) signaling pathway, tumor necrosis factor (TNF) signaling pathway, adipocytokine signaling pathway, insulin signaling pathway, insulin resistance, and estrogen signaling pathway. CONCLUSIONS: The shared underlying mechanisms of scutellarin on AP and IS treatment might be strongly associated with its vasorelaxant, anticoagulant, anti-inflammatory, and antioxidative effects as well as its effect on improving lipid metabolism.


Assuntos
Apigenina/uso terapêutico , Isquemia Encefálica , Glucuronatos/uso terapêutico , AVC Isquêmico , Angina Pectoris/tratamento farmacológico , Humanos , AVC Isquêmico/tratamento farmacológico , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases
12.
Sci Rep ; 10(1): 12745, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728182

RESUMO

Compound Kushen injection (CKI), a medicine in widespread clinical use in China, has proven therapeutic effects on cancer. However, few molecular mechanism analyses have been carried out. To address this problem, bioinformatics approaches combining weighted gene co-expression network analysis with network pharmacology methods were undertaken to elucidate the underlying molecular mechanisms of CKI in the treatment of esophageal cancer (ESCA). First, the key gene modules related to the clinical traits of ESCA were analysed by WCGNA. Based on the results, the hub genes related to CKI treatment for ESCA were explored through network pharmacology. Molecular docking simulation was performed to recognize the binding activity of hub genes with CKI compounds. The results showed that the potential hub targets, including EGFR, ErbB2, CCND1 and IGF1R, are therapeutic targets of CKI for the treatment of ESCA. Moreover, these targets were significantly enriched in many pathways related to cancer and signalling pathways, such as the PI3K-Akt signalling pathway and ErbB signalling pathway. In conclusion, this research partially highlighted the molecular mechanism of CKI in the treatment of ESCA, offering great potential in the identification of the effective compounds in CKI and biomarkers for ESCA treatment.


Assuntos
Antineoplásicos/farmacologia , Biologia Computacional/métodos , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Esofágicas/genética , Redes Reguladoras de Genes/efeitos dos fármacos , Algoritmos , Antineoplásicos/química , Ciclina D1/química , Ciclina D1/metabolismo , Bases de Dados Genéticas , Medicamentos de Ervas Chinesas/química , Receptores ErbB/química , Receptores ErbB/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Estimativa de Kaplan-Meier , Modelos Moleculares , Simulação de Acoplamento Molecular , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Receptor IGF Tipo 1/química , Receptor IGF Tipo 1/metabolismo , Análise de Sequência de RNA
13.
BMC Complement Med Ther ; 20(1): 6, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32020871

RESUMO

BACKGROUND: As an effective prescription for gastric cancer (GC), Compound Kushen Injection (CKI) has been widely used even though few molecular mechanism analyses have been carried out. METHODS: In this study, we identified 16 active ingredients and 60 GC target proteins. Then, we established a compound-predicted target network and a GC target protein-protein interaction (PPI) network by Cytoscape 3.5.1 and systematically analyzed the potential targets of CKI for the treatment of GC. Finally, molecular docking was applied to verify the key targets. In addition, we analyzed the mechanism of action of the predicted targets by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. RESULTS: The results showed that the potential targets, including CCND1, PIK3CA, AKT1, MAPK1, ERBB2, and MMP2, are the therapeutic targets of CKI for the treatment of GC. Functional enrichment analysis indicated that CKI has a therapeutic effect on GC by synergistically regulating some biological pathways, such as the cell cycle, pathways in cancer, the PI3K-AKT signaling pathway, the mTOR signaling pathway, and the FoxO signaling pathway. Moreover, molecular docking simulation indicated that the compounds had good binding activity to PIK3CA, AKT1, MAPK1, ERBB2, and MMP2 in vivo. CONCLUSION: This research partially highlighted the molecular mechanism of CKI for the treatment of GC, which has great potential in the identification of the effective compounds in CKI and biomarkers to treat GC.


Assuntos
Antineoplásicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Antineoplásicos/química , Medicamentos de Ervas Chinesas/química , Humanos , Injeções , Simulação de Acoplamento Molecular , Mapas de Interação de Proteínas , Transdução de Sinais
14.
Neurotherapeutics ; 16(3): 741-760, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30815845

RESUMO

Parkinson's disease (PD) is strongly associated with life style, especially dietary habits, which have gained attention as disease modifiers. Here, we report a fasting mimicking diet (FMD), fasting 3 days followed by 4 days of refeeding for three 1-week cycles, which accelerated the retention of motor function and attenuated the loss of dopaminergic neurons in the substantia nigra in 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-induced PD mice. Levels of brain-derived neurotrophic factor (BDNF), known to promote the survival of dopaminergic neurons, were increased in PD mice after FMD, suggesting an involvement of BDNF in FMD-mediated neuroprotection. Furthermore, FMD decreased the number of glial cells as well as the release of TNF-α and IL-1ß in PD mice, showing that FMD also inhibited neuro-inflammation. 16S and 18S rRNA sequencing of fecal microbiota showed that FMD treatment modulated the shifts in gut microbiota composition, including higher abundance of Firmicutes, Tenericutes, and Opisthokonta and lower abundance of Proteobacteria at the phylum level in PD mice. Gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry revealed that FMD modulated the MPTP-induced lower propionic acid and isobutyric acid, and higher butyric acid and valeric acid and other metabolites. Transplantation of fecal microbiota, from normal mice with FMD treatment to antibiotic-pretreated PD mice increased dopamine levels in the recipient PD mice, suggesting that gut microbiota contributed to the neuroprotection of FMD for PD. These findings demonstrate that FMD can be a new means of preventing and treating PD through promoting a favorable gut microbiota composition and metabolites.


Assuntos
Jejum , Microbioma Gastrointestinal , Transtornos Parkinsonianos/prevenção & controle , Animais , Western Blotting , Química Encefálica , Fator Neurotrófico Derivado do Encéfalo/análise , Corpo Estriado/química , Dopamina/análise , Dopamina/metabolismo , Ensaio de Imunoadsorção Enzimática , Jejum/fisiologia , Imunofluorescência , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Parkinsonianos/dietoterapia , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Serotonina/análise , Serotonina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
Eur J Pharmacol ; 848: 11-22, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30659827

RESUMO

Targeting mitochondria using proper pharmacological agents is considered an attractive strategy for cancer control and management. Herein, we report a newly synthetic triazole analog of Jaridonin, DN3, which exhibits more potent antitumor activity via acting directly on mitochondria. DN3 potently reduced viabilities of gastric cancer cell lines HGC-27 and MGC-803 through inducing apoptosis and cell cycle arrest. But, normal human gastric epithelial cell line GES-1 is more resistant to the growth inhibition by DN3 compared with gastric cancer cells. DN3 induced mitochondrial membrane potential (MMP) decrease and cytochrome c release in intact gastric cancer cell lines. Meanwhile, the DN3 treatment also caused the release of cytochrome c from mitochondria isolated from cancer cell lines in a mitochondrial permeability transition pore complex (PTPC) mediated manner, but not from mitochondria isolated from normal gastric epithelial cell. The induction of mitochondrial PTPC proteins voltage-dependent anion channel (VDAC) and cyclophilin D (CypD) were also observed in DN3-treated cells. More interestingly, DN3 mediated MMP decrease, release of cytochrome c, the expression of VDAC and CypD and apoptosis were blocked by the pretreatment of VDAC1 inhibitor (4, 4'-diisothiocyanatostilbene-2,2'-disulfonic acid, DIDS) and CypD inhibitor (cyclosporine A, CsA). In a mouse xenograft model of human gastric cancer, the treatment of 5 mg/kg DN3 led to significant tumor regression without affecting body weight. In conclusion, our findings indicate that DN3 is a potential agent for the treatment of gastric cancer through acting directly on mitochondria, and would be useful for us to design more and better anti-cancer compounds.


Assuntos
Diterpenos do Tipo Caurano/farmacologia , Diterpenos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias Gástricas/metabolismo , Animais , Linhagem Celular Transformada , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Diterpenos/síntese química , Diterpenos/uso terapêutico , Diterpenos do Tipo Caurano/síntese química , Diterpenos do Tipo Caurano/uso terapêutico , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
16.
Exp Ther Med ; 15(1): 166-172, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29399060

RESUMO

The present study aimed to investigate the therapeutic effects of Euterpe oleracea Mart. (EO) on alcoholic liver diseases (ALD). A total of 30 Wistar rats were randomly divided into three groups (10 rats per group), including alcohol group (alcohol intake), EO group (alcohol + EO puree intake) and control group (distilled water intake). The activity of superoxide dismutase (SOD) and alkaline phosphatase (ALP), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and the levels of cholesterol (CHO), triglyceride (TG), malondialdehyde (MDA) and glutathione (GSH) in the serum as well as the liver tissue levels of interleukin 8 (IL-8), tumor necrosis factor-α (TNF-α) and transforming growth factor-ß (TGF-ß) were measured. Histopathological changes in liver tissues were observed by hematoxylin and eosin staining. Reverse-transcription quantitative PCR analysis was performed for detecting the expression of nuclear factor (NF)-κB and CD68. The results indicated that EO intake significantly decreased ALT, AST, ALP, TG and CHO as well as the hepatic index in alcohol-treated rats. In addition, EO treatment relieved alcohol-induced oxidative stress by decreasing the levels of MDA and TG, and increasing the activity of SOD and GSH levels. In addition, the expression of TNF-α, TGF-ß, IL-8, NF-κB and CD-68 in the liver were decreased by EO treatment. Furthermore, EO intake alleviated the histopathological liver damage, including severe steatosis and abundant infiltrated inflammatory cells. In conclusion, EO alleviated alcohol-induced liver injury in rats by alleviating oxidative stress and inflammatory response.

17.
Brain Behav Immun ; 70: 48-60, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29471030

RESUMO

Parkinson's disease (PD) patients display alterations in gut microbiota composition. However, mechanism between gut microbial dysbiosis and pathogenesis of PD remains unexplored, and no recognized therapies are available to halt or slow progression of PD. Here we identified that gut microbiota from PD mice induced motor impairment and striatal neurotransmitter decrease on normal mice. Sequencing of 16S rRNA revealed that phylum Firmicutes and order Clostridiales decreased, while phylum Proteobacteria, order Turicibacterales and Enterobacteriales increased in fecal samples of PD mice, along with increased fecal short-chain fatty acids (SCFAs). Remarkably, fecal microbiota transplantation (FMT) reduced gut microbial dysbiosis, decreased fecal SCFAs, alleviated physical impairment, and increased striatal DA and 5-HT content of PD mice. Further, FMT reduced the activation of microglia and astrocytes in the substantia nigra, and reduced expression of TLR4/TNF-α signaling pathway components in gut and brain. Our study demonstrates that gut microbial dysbiosis is involved in PD pathogenesis, and FMT can protect PD mice by suppressing neuroinflammation and reducing TLR4/TNF-α signaling.


Assuntos
Transplante de Microbiota Fecal/métodos , Microbioma Gastrointestinal/fisiologia , Doença de Parkinson/terapia , Animais , Encéfalo , Modelos Animais de Doenças , Disbiose/metabolismo , Disbiose/fisiopatologia , Fezes/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia , Neuroglia/efeitos dos fármacos , Fármacos Neuroprotetores , Doença de Parkinson/fisiopatologia , RNA Ribossômico 16S/genética , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
18.
Org Biomol Chem ; 15(44): 9455-9464, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29098222

RESUMO

An efficient and convenient copper-catalyzed chalcogenation of imidazoheterocycles with sulfur/selenium powder and coumarinyl triflates has been described. This procedure provides a wide range of structurally diverse coumarinylthio-/coumarinylseleno-substituted imidazoheterocycles in good yields and with good functional group tolerance. Biological evaluation showed that the newly synthesized compound 6d possesses significant in vitro antiproliferative activities against human-derived esophageal, breast, stomach, and prostate cancer cell lines compared with the positive control, 5-fluorouracil.


Assuntos
Cobre/química , Cumarínicos/química , Imidazóis/química , Selênio/química , Enxofre/química , Catálise
19.
Eur J Med Chem ; 140: 392-402, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-28987602

RESUMO

Lysine specific demethylase 1 (LSD1) and Histone deacetylases (HDACs) are promising drug targets for cancers. Recent studies reveal an important functional interplay between LSD1 and HDACs, and there is evidence for the synergistic effect of combined LSD1 and HDAC inhibitors on cancers. Therefore, development of inhibitors targeting both LSD1 and HDACs might be a promising strategy for epigenetic therapy of cancers. We report herein the synthesis of a series of tranylcypromine derivatives as LSD1/HDACs dual inhibitors. Most compounds showed potent LSD1 and HDACs inhibitory activity, especially compound 7 displayed the most potent inhibitory activity against HDAC1 and HDAC2 with IC50 of 15 nM and 23 nM, as well as potent inhibition against LSD1 with IC50 of 1.20 µM. Compound 7 demonstrated stronger anti-proliferative activities than SAHA with IC50 values ranging from 0.81 to 4.28 µM against MGC-803, MCF-7, SW-620 and A-549 human cancer cell lines. Further mechanistic studies showed that compound 7 treatment in MGC-803 cells dose-dependently increased cellular H3K4 and H3K9 methylation, as well as H3 acetylation, decreased the mitochondrial membrane potential and induced remarkable apoptosis. Docking studies showed that compound 7 can be well docked into the active binding sites of LSD1 and HDAC2. This finding highlights the potential for the development of LSD1/HDACs dual inhibitors as novel anticancer drugs.


Assuntos
Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desmetilases/antagonistas & inibidores , Neoplasias/patologia , Tranilcipromina/química , Tranilcipromina/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores de Histona Desacetilases/síntese química , Humanos , Metilação , Simulação de Acoplamento Molecular , Tranilcipromina/síntese química
20.
Oncotarget ; 7(52): 86211-86224, 2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-27863415

RESUMO

Ent-kaurane diterpene compounds have attracted considerable attention in recent years due to its antitumor, antibacterial, and antiviral activities. However, the clinical development of natural kaurane diterpenes, for example, oridonin for cancer therapy has been hampered by its relatively moderate potency, limited bioavailability. Herein, we report a newly synthetic analog of natural ent-kaurane diterpene, DS2, which exhibits significantly improved activity of antiproliferation against various cancer cell lines relative to oridonin. DS2 treatment triggers the mitochondria-mediated apoptosis and cell cycle arrest in human esophageal cancer cell lines (EC9706, EC109). Interestingly, normal human esophageal epithelial cells (HEECs) and normal human liver cells (HL-7702) are both significantly more resistant to the growth inhibition by DS2 compared with esophageal cancer cells. The DS2-induced apoptosis in EC9706 cells correlated with the drop of mitochondrial membrane potential (MMP), release of cytochrome c into the cytosol and activation of caspase-9 and -3. The induction of proapoptotic proteins p21 and Bax were also observed in DS2-treated cells. The DS2-induced apoptosis was significantly attenuated by knockdown of Bax proteins. Meanwhile, the DS2 treatment caused generation of reactive oxygen species (ROS) in human esophageal cancer cells, but not in HEECs, which was attenuated by pretreatment with ROS scavenger N-acetylcysteine (NAC). More interestingly, the antioxidants pretreatment completely attenuated DS2 mediated loss of the MMP and apoptosis, as well as Bax expression and growth inhibition. In conclusion, the present study reveals that the mitochondria-mediated cell death by DS2 is associated with Bax regulation and ROS generation, and understanding the function and mechanism of DS2 will help us to design better anti-cancer drugs.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Diterpenos do Tipo Caurano/farmacologia , Neoplasias Esofágicas/tratamento farmacológico , Mitocôndrias/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/fisiologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocromos c/metabolismo , Diterpenos do Tipo Caurano/química , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA