Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 207: 108392, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38301328

RESUMO

Growth-regulating factors (GRFs) play crucial roles in plant growth, development, hormone signaling, and stress response. Despite their significance, the roles of GRFs in ginger remain largely unknown. Herein, 31 ginger ZoGRFs were identified and designated as ZoGRF1-ZoGRF31 according to their phylogenetic relationships. All ZoGRFs were characterized as unstable, hydrophilic proteins, with 29 predicted to be located in the nucleus. Functional cis-elements related to growth and development were enriched in ZoGRF's promoter regions. RNA-seq and RT-qPCR analysis revealed that ZoGRF12, ZoGRF24, and ZoGRF28 were highly induced in various growth and development stages, displaying differential regulation under waterlogging, chilling, drought, and salt stresses, indicating diverse expression patterns of ZoGRFs. Transient expression analysis in Nicotiana benthamiana indicated that overexpressing ZoGRF28 regulated the transcription levels of salicylic acid, jasmonic acid, and pattern-triggered immunity-related genes, increased chlorophyll content and contributed to reduced disease lesions and an increased net photosynthetic rate. This research lays the foundation for further understanding the biological roles of ZoGRFs.


Assuntos
Zingiber officinale , Zingiber officinale/genética , Filogenia , Fotossíntese , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Protoplasma ; 260(4): 1221-1232, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36840780

RESUMO

Sinopodophyllum hexandrum (Royle) T. S. Ying, an important source of podophyllotoxin (PTOX), has become a rare and endangered plant because of over-harvesting. Somatic embryogenesis (SE) is the main way of seedling rapid propagation and germplasm enhancement, but the regeneration of S. hexandrum has not been well established, and the PTOX biosynthesis abilities at different SE stages remain unclear. Therefore, it is extremely important to elucidate the SE mechanism of S. hexandrum and clarify the biosynthesis variation of PTOX. In this study, the transcriptomes of S. hexandrum at different SE stages were sequenced, the contents of PTOX and 4'-demethylepipodophyllotoxin were assayed, and the transcript expression patterns were validated by qRT-PCR. The results revealed that plant hormone (such as auxins, abscisic acid, zeatin, and gibberellins) related pathways were significantly enriched among different SE stages, indicating these plant hormones play important roles in SE of S. hexandrum; the expression levels of a series of PTOX biosynthesis related genes as well as PTOX and 4'-demethylepipodophyllotoxin contents were much higher in embryogenic callus stage than in the other stages, suggesting embryogenic callus stage has the best PTOX biosynthesis ability among different SE stages. This study will contribute to germplasm conservation and fast propagation of S. hexandrum, and facilitate the production of PTOX.


Assuntos
Berberidaceae , Podofilotoxina , Perfilação da Expressão Gênica , Berberidaceae/genética , Transcriptoma/genética , Reguladores de Crescimento de Plantas , Técnicas de Embriogênese Somática de Plantas
3.
J Appl Microbiol ; 133(4): 2642-2654, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35892189

RESUMO

AIMS: The current study aimed to determine the chemical compositions of ginger extract (GE) and to assess the antibacterial activities of GE against the ginger bacterial wilt pathogen Ralstonia solanacearum and to screen their mechanisms of action. METHODS AND RESULTS: A total of 393 compounds were identified by using ultra-performance liquid chromatography and tandem-mass spectrometry. The antibacterial test indicated that GE had strong antibacterial activity against R. solanacearum and that the bactericidal effect exhibited a dose-dependent manner. The minimum inhibitory concentration and minimum bactericidal concentration of R. solanacearum were 3.91 and 125 mg/ml, respectively. The cell membrane permeability and integrity of R. solanacearum were destroyed by GE, resulting in cell content leakage, such as electrolytes, nucleic acids, proteins, extracellular adenosine triphosphate and exopoly saccharides. In addition, the activity of cellular succinate dehydrogenase and alkaline phosphatase of R. solanacearum decreased gradually with an increase in the GE concentration. Scanning electron microscopy analysis revealed that GE treatment changed the morphology of the R. solanacearum cells. Further experiments demonstrated that GE delayed or slowed the occurrence of bacterial wilt on ginger. CONCLUSIONS: GE has a significant antibacterial effect on R. solanacearum, and the antibacterial effect is concentration dependent. The GE treatments changed the morphology, destroyed membrane permeability and integrity, reduced key enzyme activity and inhibit the synthesis of the virulence factor EPS of R. solanacearum. GE significantly controlled the bacterial wilt of ginger during infection. SIGNIFICANCE AND IMPACT OF THE STUDY: This research provides insight into the antimicrobial mechanism of GE against R. solanacearum, which will open a new application field for GE.


Assuntos
Ácidos Nucleicos , Ralstonia solanacearum , Solanum lycopersicum , Zingiber officinale , Trifosfato de Adenosina , Fosfatase Alcalina/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Extratos Vegetais , Succinato Desidrogenase/farmacologia , Fatores de Virulência
4.
Plant Genome ; 15(3): e20246, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35894660

RESUMO

The Lin-11, Isl-1, and Mec-3 domains (LIM) transcription factors play essential roles in regulating plant biological processes. Despite that, there is a lack of a full understanding of LIMs in wheat (Triticum aestivum L.). In this study, 28 wheat LIM s (TaLIMs) were identified and designated as TaLIM1-1A to TaLIM12-7D. The cis-regulatory element analysis showed that TaLIMs were rich in elements related to biological and abiotic stresses. Expression profiling analysis showed that certain members of TaLIMs were responsive to biotic and abiotic stresses, such as TaLIM1-1A, TaLIM3-2B, TaLIM8-4D, and TaLIM10-5D, were significantly induced by heat, drought, sodium chloride (NaCl), abscisic acid (ABA) and Fusarium graminearum stresses. Furthermore, the biological function of TaLIM8-4D was analyzed and results showed that it was subcellular localization in the nucleus and could induce weak cell death in Nicotiana benthamiana leaves. Additionally, overexpression of TaLIM8-4D could upregulate plant pathogenesis-related (PR) genes, promoting the infection of hemibiotrophic pathogen, implying that TaLIM8-4D could function as susceptible gene in the nucleus by upregulating PR genes and inducing cell death to promote the colonization of hemibiotrophic agent F. graminearum. Overall, the systematic identification, characterization, expression profiling, evolutionary, and function analyses provided the ability to understand TaLIMs and laid a foundation for the further function study of LIM family members in wheat.


Assuntos
Cloreto de Sódio , Triticum , Ácido Abscísico , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloreto de Sódio/metabolismo , Fatores de Transcrição/genética , Triticum/genética
5.
Front Plant Sci ; 13: 816143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371177

RESUMO

Postharvest deterioration of ginger rhizome caused by microorganisms or wound infections causes significant economic losses. Fusarium solani is one of the important causal agents of prevalent ginger disease soft rot across the world. The massive and continuous use of chemical fungicides in postharvest preservation pose risks to human health and produce environmental contamination. Hence, new alternative tools are required to reduce postharvest deterioration and extend the postharvest life of ginger. In this study, the use of silicon nanoparticles (SiNPs) on the storability of ginger rhizomes during postharvest storage and their resistance to Fusarium solani was investigated. The results showed that 50, 100, and 150 mg L-1 of SiNPs increased the firmness of the ginger rhizome during storage but decreased the decay severity, water loss, total color difference, and the reactive oxygen species (ROS; H2O2 and superoxide anion) accumulation. Specifically, 100 mg L-1 (SiNP100) demonstrated the best effect in the extension of postharvest life and improved the quality of the ginger rhizomes. SiNP100 application increased the activities of antioxidant enzymes (SOD and CAT) and the total phenolics and flavonoid contents, thereby reducing the ROS accumulation and malondialdehyde (MDA) content. Meanwhile, SiNP100 treatment negatively impacts the peroxidase (POD) and polyphenol oxidase (PPO) activities, which may have contributed to the lower level of lignin and decreased total color difference. SiNP100 likely decreased water loss and the transfer of water by altering the expression of aquaporin genes. Moreover, SiNP100 modulated the expression of lignin synthesis and phytopathogenic responses genes including MYB and LysM genes. Furthermore, SiNP100 inhibited Fusarium solani by preventing the penetration of hyphae into cells, thus decreasing the severity of postharvest pathogenic decay. In summary, this study revealed the physiology and molecular mechanisms of SiNPs-induced tolerance to postharvest deterioration and resistance to disease, which provides a foundation for using SiNPs resources as a promising alternative tool to maintain ginger quality and control postharvest diseases.

6.
BMC Plant Biol ; 20(1): 359, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727369

RESUMO

BACKGROUNDS: C2H2-type zinc finger protein (ZFPs) form a relatively large family of transcriptional regulators in plants, and play many roles in plant growth, development, and stress response. However, the comprehensive analysis of C2H2 ZFPs in cucumber (CsZFPs) and their regulation function in cucumber are still lacking. RESULTS: In the current study, the whole genome identification and characterization of CsZFPs, including the gene structure, genome localization, phylogenetic relationship, and gene expression were performed. Functional analysis of 4 selected genes by transient transformation were also conducted. A total of 129 full-length CsZFPs were identified, which could be classified into four groups according to the phylogenetic analysis. The 129 CsZFPs unequally distributed on 7 chromosomes. Promoter cis-element analysis showed that the CsZFPs might involve in the regulation of phytohormone and/or abiotic stress response, and 93 CsZFPs were predicted to be targeted by one to 20 miRNAs. Moreover, the subcellular localization analysis indicated that 10 tested CsZFPs located in the nucleus and the transcriptome profiling analysis of CsZFPs demonstrated that these genes are involved in root and floral development, pollination and fruit spine. Furthermore, the transient overexpression of Csa1G085390 and Csa7G071440 into Nicotiana benthamiana plants revealed that they could decrease and induce leave necrosis in response to pathogen attack, respectively, and they could enhance salt and drought stresses through the initial induction of H2O2. In addition, Csa4G642460 and Csa6G303740 could induce cell death after 5 days transformation. CONCLUSIONS: The identification and function analysis of CsZFPs demonstrated that some key individual CsZFPs might play essential roles in response to biotic and abiotic stresses. These results could lay the foundation for understanding the role of CsZFPs in cucumber development for future genetic engineering studies.


Assuntos
Dedos de Zinco CYS2-HIS2/genética , Cucumis sativus/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Morte Celular/genética , Mapeamento Cromossômico , Cucumis sativus/genética , Cucumis sativus/crescimento & desenvolvimento , Secas , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Peróxido de Hidrogênio/metabolismo , MicroRNAs , Filogenia , Células Vegetais , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Nicotiana/genética , Nicotiana/microbiologia
7.
BMC Plant Biol ; 19(1): 345, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31390991

RESUMO

BACKGROUND: Aquaporin (AQP) proteins comprise a group of membrane intrinsic proteins (MIPs) that are responsible for transporting water and other small molecules, which is crucial for plant survival under stress conditions including salt stress. Despite the vital role of AQPs, little is known about them in cucumber (Cucumis sativus L.). RESULTS: In this study, we identified 39 aquaporin-encoding genes in cucumber that were separated by phylogenetic analysis into five sub-families (PIP, TIP, NIP, SIP, and XIP). Their substrate specificity was then assessed based on key amino acid residues such as the aromatic/Arginine (ar/R) selectivity filter, Froger's positions, and specificity-determining positions. The putative cis-regulatory motifs available in the promoter region of each AQP gene were analyzed and results revealed that their promoter regions contain many abiotic related cis-regulatory elements. Furthermore, analysis of previously released RNA-seq data revealed tissue- and treatment-specific expression patterns of cucumber AQP genes (CsAQPs). Three aquaporins (CsTIP1;1, CsPIP2;4, and CsPIP1;2) were the most transcript abundance genes, with CsTIP1;1 showing the highest expression levels among all aquaporins. Subcellular localization analysis in Nicotiana benthamiana epidermal cells revealed the diverse and broad array of sub-cellular localizations of CsAQPs. We then performed RNA-seq to identify the expression pattern of CsAQPs under salt stress and found a general decreased expression level of root CsAQPs. Moreover, qRT-PCR revealed rapid changes in the expression levels of CsAQPs in response to diverse abiotic stresses including salt, polyethylene glycol (PEG)-6000, heat, and chilling stresses. Additionally, transient expression of AQPs in N. benthamiana increased leaf water loss rate, suggesting their potential roles in the regulation of plant water status under stress conditions. CONCLUSIONS: Our results indicated that CsAQPs play important roles in response to salt stress. The genome-wide identification and primary function characterization of cucumber aquaporins provides insight to elucidate the complexity of the AQP gene family and their biological functions in cucumber.


Assuntos
Aquaporinas/fisiologia , Cucumis sativus/genética , Proteínas de Plantas/fisiologia , Aquaporinas/genética , Aquaporinas/metabolismo , Cucumis sativus/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Peróxido de Hidrogênio/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Transcriptoma , Água/metabolismo
8.
Ecotoxicol Environ Saf ; 169: 8-17, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30412897

RESUMO

Silicon can increase salt tolerance, but the underlying mechanism has remained unclear. Here, we investigated the effect of silicon on polyamine metabolism and the role of polyamine accumulation in silicon-mediated salt tolerance in cucumber. Seedlings of cucumber 'JinYou 1' were subjected to salt stress (75 mM NaCl) in the presence or absence of added 0.3 mM silicon. Plant growth, polyamine metabolism and effects of exogenous polyamines and polyamine synthesis inhibitor dicyclohexylammonium sulphate on oxidative damage were investigated. The results showed that salt stress inhibited plant growth and decreased leaf chlorophyll levels and the maximum quantum yield of PSII, and added silicon ameliorated these negative effects. Salt stress increased polyamine accumulation in the leaves and roots. Compared with salt stress alone, overall, silicon addition decreased free putrescine concentrations, but increased spermidine and spermine concentrations in both leaves and roots under salt stress. Silicon application resulted in increased polyamine levels under salt stress by promoting the activities of S-adenosylmethionine decarboxylase and arginine decarboxylase while inhibiting the activity of diamine oxidase. Exogenous application of spermidine and spermine alleviated salt-stress-induced oxidative damage, whereas polyamine synthesis inhibitor eliminated the silicon-mediated decrease in oxidative damage. The results suggest that silicon-enhanced polyamine accumulation in cucumber under salt stress may play a role in decreasing oxidative damage and therefore increase the salt tolerance.


Assuntos
Cucumis sativus/efeitos dos fármacos , Poliaminas/metabolismo , Plantas Tolerantes a Sal/efeitos dos fármacos , Silício/farmacologia , Clorofila/metabolismo , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Putrescina/metabolismo , Tolerância ao Sal , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/metabolismo , Espermidina/metabolismo , Espermina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA