Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Bioact Mater ; 39: 59-73, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38800720

RESUMO

Spheroids and organoids have attracted significant attention as innovative models for disease modeling and drug screening. By employing diverse types of spheroids or organoids, it is feasible to establish microphysiological systems that enhance the precision of disease modeling and offer more dependable and comprehensive drug screening. High-throughput microphysiological systems that support optional, parallel testing of multiple drugs have promising applications in personalized medical treatment and drug research. However, establishing such a system is highly challenging and requires a multidisciplinary approach. This study introduces a dynamic Microphysiological System Chip Platform (MSCP) with multiple functional microstructures that encompass the mentioned advantages. We developed a high-throughput lung cancer spheroids model and an intestine-liver-heart-lung cancer microphysiological system for conducting parallel testing on four anti-lung cancer drugs, demonstrating the feasibility of the MSCP. This microphysiological system combines microscale and macroscale biomimetics to enable a comprehensive assessment of drug efficacy and side effects. Moreover, the microphysiological system enables evaluation of the real pharmacological effect of drug molecules reaching the target lesion after absorption by normal organs through fluid-based physiological communication. The MSCP could serves as a valuable platform for microphysiological system research, making significant contributions to disease modeling, drug development, and personalized medical treatment.

2.
Neuroscience ; 549: 42-54, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38729599

RESUMO

Depression, affecting individuals worldwide, is a prevalent mental disease, with an increasing incidence. Numerous studies have been conducted on depression, yet its pathogenesis remains elusive. Recent advancements in research indicate that disturbances in synaptic transmission, synaptic plasticity, and reduced neurotrophic factor expression significantly contribute to depression's pathogenesis. In our study, we utilized adult male C57BL/6J mice. Lipopolysaccharide (LPS) can induce both chronic and acute depression-like symptoms in mice, a widely used model for studying depression associated with inflammation. N-acetylcysteine (NAC) exhibits anti-inflammatory and ameliorative effects on depressive symptoms. This study sought to determine whether NAC use could mitigate inflammatory depressive behavior through the enhancement of synaptic transmission, synaptic plasticity, and increasing levels of brain-derived neurotrophic factor (BDNF). In this study, we discovered that in mice modeled with depression-like symptoms, the expression levels of dendrites, BDNF, and miniature excitatory postsynaptic potential (mEPSC) in glutamatergic neurons, as well as the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid glutamate receptors (AMPARs) GluA1 and GluA2 subunits, were significantly decreased. These findings suggest an impairment in the synaptic transmission of glutamatergic neurons. Following treatment with NAC, the previously mentioned levels improved, indicating an enhancement in both synaptic transmission and synaptic plasticity. Our results suggest that NAC exerts a protective effect on mouse models of inflammatory depression, potentially through the enhancement of synaptic transmission and plasticity, as well as the restoration of neurotrophic factor expression. These findings offer vital animal experimental evidence supporting NAC's role in mitigating inflammatory depressive behaviors.


Assuntos
Acetilcisteína , Fator Neurotrófico Derivado do Encéfalo , Depressão , Inflamação , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Animais , Masculino , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/metabolismo , Depressão/prevenção & controle , Acetilcisteína/farmacologia , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Receptores de AMPA/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
3.
Anal Chem ; 96(14): 5560-5569, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38529650

RESUMO

Catalytic DNA circuits are desirable for sensitive bioimaging in living cells; yet, it remains a challenge to monitor these intricate signal communications because of the uncontrolled circuitry leakage and insufficient cell selectivity. Herein, a simple yet powerful DNA-repairing enzyme (APE1) activation strategy is introduced to achieve the site-specific exposure of a catalytic DNA circuit for realizing the selectively amplified imaging of intracellular microRNA and robust evaluation of the APE1-involved drug resistance. Specifically, the circuitry reactants are firmly blocked by the enzyme recognition/cleavage site to prevent undesirable off-site circuitry leakage. The caged DNA circuit has no target-sensing activity until its circuitry components are activated via the enzyme-mediated structural reconstitution and finally transduces the amplified fluorescence signal within the miRNA stimulation. The designed DNA circuit demonstrates an enhanced signal-to-background ratio of miRNA assay as compared with the conventional DNA circuit and enables the cancer-cell-selective imaging of miRNA. In addition, it shows robust sensing performance in visualizing the APE1-mediated chemoresistance in living cells, which is anticipated to achieve in-depth clinical diagnosis and chemotherapy research.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/química , DNA Catalítico/química , Hibridização de Ácido Nucleico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , DNA/química , Técnicas Biossensoriais/métodos
4.
iScience ; 26(12): 107962, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38094245

RESUMO

Although three-dimensional (3D) tumor models feature more accurate responses to drugs, the Matrigel scaffold affects the drug diffusion effect. Obtaining accurate drug spatiotemporal response characteristics is of great significance in the drug screening domain. However, the conventional cell-based sensors are difficult to perform spatiotemporal dynamics impedance monitoring of 3D cells and evaluate the anti-cancer pharmacological effect. Here, we proposed a biosensing platform involving a vertical impedance electrode array (VIEA) chip and a multichannel detection system. The platform can dynamically record 3D cell impedance in the vertical direction, which is consistent with time- and location-dependent drug penetration, closely related to spatiotemporal cell viability under drug effects. The subtle changes of impedance signals in different locations induced by drug diffusion can be detected, which demonstrates its high performance in drug systematic evaluation. The universal and high-content 3D cell biosensing platform is believed to have promising potential in pharmacodynamics investigation and preclinical drug screening.

5.
Sci Rep ; 13(1): 20533, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996496

RESUMO

A primary challenge of high-throughput imaging flow cytometry (IFC) is to analyze the vast amount of imaging data, especially in applications where ground truth labels are unavailable or hard to obtain. We present an unsupervised deep embedding algorithm, the Deep Convolutional Autoencoder-based Clustering (DCAEC) model, to cluster label-free IFC images without any prior knowledge of input labels. The DCAEC model first encodes the input images into the latent representations and then clusters based on the latent representations. Using the DCAEC model, we achieve a balanced accuracy of 91.9% for human white blood cell (WBC) clustering and 97.9% for WBC/leukemia clustering using the 3D IFC images and 3D DCAEC model. Above all, although no human recognizable features can separate the clusters of cells with protein localization, we demonstrate the fused DCAEC model can achieve a cluster balanced accuracy of 85.3% from the label-free 2D transmission and 3D side scattering images. To reveal how the neural network recognizes features beyond human ability, we use the gradient-weighted class activation mapping method to discover the cluster-specific visual patterns automatically. Evaluation results show that the automatically identified salient image regions have strong cluster-specific visual patterns for different clusters, which we believe is a stride for the interpretable neural network for cell analysis with high-throughput IFCs.


Assuntos
Algoritmos , Aprendizado de Máquina não Supervisionado , Humanos , Citometria de Fluxo/métodos , Redes Neurais de Computação , Análise por Conglomerados
6.
Int J Mol Sci ; 24(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37834269

RESUMO

An imbalance in PI3K/AKT/mTOR pathway signaling in humans often leads to cancer. Therefore, the investigation of anti-cancer medications that inhibit PI3K and mTOR has emerged as a significant area of research. The aim of this study was to explore the effect of XIN-10, a dual PI3K/mTOR inhibitor, on the growth as well as antiproliferation of tumor cells and to investigate the anti-tumor mechanism of XIN-10 by further exploration. We screened three cell lines for more in-depth exploration by MTT experiments. From the AO staining, cell cycle and apoptosis, we found that XIN-10 had a more obvious inhibitory effect on the MCF-7 breast cancer cell line and used this as a selection for more in-depth experiments. A series of in vitro and in vivo experiments showed that XIN-10 has superior antiproliferative activity compared with the positive drug GDC-0941. Meanwhile, through the results of protein blotting and PCR experiments, we concluded that XIN-10 can block the activation of the downstream pathway of mTOR by inhibiting the phosphorylation of AKT(S473) as well as having significant inhibitory effects on the gene exons of PI3K and mTOR. These results indicate that XIN-10 is a highly potent inhibitor with low toxicity and has a strong potential to be developed as a novel PI3Kα/mTOR dual inhibitor candidate for the treatment of positive breast cancer.


Assuntos
Neoplasias da Mama , Inibidores de MTOR , Fosfatidilinositol 3-Quinases , Inibidores de Fosfoinositídeo-3 Quinase , Feminino , Humanos , Apoptose , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Inibidores de MTOR/farmacologia , Inibidores de MTOR/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
7.
Exp Cell Res ; 433(1): 113795, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37797799

RESUMO

It was reported that lowly expressed RING1 indicates poor prognosis in breast cancer (BC) patients, while the mechanism by which RING1 is involved in BC progression is not fully understood. Here, we found that RING1 was lowly expressed in BC tissues and cells than in normal mammary tissues and epithelial cells. Overexpression of RING1 suppressed the cell proliferative and colony formation abilities, and facilitated cell cycle arrest and cell apoptosis in BC cells (T47D and MCF-7 cells). Mechanistically, as an ubiquitin ligase, RING1 bound to HSF1 and induced its proteasome-dependent degradation. HSF1 could bind to the promoter region of MT2A to promote the transcriptional level of MT2A. While RING1 overexpression hindered the transcriptional activation of MT2A induced by HSF1. Moreover, ectopic expression of MT2A reversed the inhibitory effect of RING1 on cell proliferation and clonogenesis, and antagonized the promotion effect of RING1 on cell cycle arrest and apoptosis in BC cells. Additionally, T47D cells infected with or without lentivirus-mediated RING1 overexpression vector (LV-RING1) were injected subcutaneously into the right back of nude mice to evaluate tumorigenicity. And overexpression of RING1 impeded the growth of BC xenografts in mice. In conclusion, RING1 suppressed the transcriptional activation of MT2A induced by HSF1 by facilitating the ubiquitination degradation of HSF1, resulting in cell cycle arrest and apoptosis in BC cells.

8.
Chin J Cancer Res ; 35(4): 354-364, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37691897

RESUMO

Objective: As laparoscopic surgery is widely applied for primarily treated gastric cancer (GC)/gastroesophageal junction cancer (GEJC) and gains many advantages, the feasibility of laparoscopic total gastrectomy (LTG) for GC/GEJC patients who have received preoperative therapy (PT) has come to the fore. This study aims to analyze the safety and feasibility of LTG after PT for GC/GEJC patients. Methods: We retrospectively analyzed the data of 511 patients with GC/GEJC undergoing LTG, of which 405 received LTG (LTG group) and 106 received PT+LTG (PT-LTG group) at Nanfang Hospital between June 2018 and September 2022. The surgical outcomes were compared between the two groups. Results: The surgical duration was significantly longer in the PT-LTG group (P<0.001), while the incidence of intraoperative complications (P=1.000), postoperative complications (LTG group vs. PT-LTG group: 26.2% vs. 23.6%, P=0.587), the classification of complication severity (P=0.271), and postoperative recovery was similar between two groups. Notably, the incidence of anastomotic complications of esophagojejunostomy was also comparable between the two groups (LTG group vs. PT-LTG group: 5.9% vs. 5.7%, P=0.918). The univariate and multivariate analysis confirmed that positive proximal margin [positive vs. negative: odds ratio (OR)=14.094, 95% confidence interval (95% CI): 2.639-75.260, P=0.002], rather than PT, has an impact on anastomotic complications after LTG (OR=0.945, 95% CI: 0.371-2.408, P=0.905). Conclusions: PT did not increase the surgical risk of LTG for GC/GEJC. Therefore, considering the positive effect of PT on long-term survival, the broader application of PT and LTG for GC/GEJC is supported by our findings.

9.
Front Immunol ; 14: 1237361, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575228

RESUMO

Malignant tumors have a unique tumor microenvironment (TME), which includes mild acidity, hypoxia, overexpressed reactive oxygen species (ROS), and high glutathione (GSH) levels, among others. Recently, TME regulation approaches have attracted widespread attention in cancer immunotherapy. Nanoparticles as drug delivery systems have ability to modulate the hydrophilicity of drugs to affect drug uptake and efflux in tumor. Especially, the metal nanoparticles have been extensive applied for tumor immunotherapy due to their unique physical properties and elaborate design. However, the potential deficiencies of metal nanoparticles due to their low biodegradability, toxicity and treatment side effects restrict their clinical application. In this review, we briefly introduce the feature characteristics of the TME and the recent advances in tumor microenvironment responsive metal nanoparticles for tumor immunotherapy. In addition, nanoparticles could be combined with other treatments, such as chemotherapy, radiotherapy and photodynamic therapy also is presented. Finally, the challenges and outlook for improving the antitumor immunotherapy efficiency, side effect and potential risks of metal nanoparticles has been discussed.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Nanopartículas Metálicas , Neoplasias , Humanos , Microambiente Tumoral , Imunoterapia/efeitos adversos , Nanopartículas Metálicas/uso terapêutico , Sistemas de Liberação de Medicamentos , Glutationa , Neoplasias/terapia
10.
Drug Des Devel Ther ; 17: 1783-1792, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37337518

RESUMO

Chimeric antigen receptor (CAR) T cell therapy, as an innovative immunotherapy, plays a huge role in current cancer therapy. Although CAR T cell therapy has demonstrated therapeutic effects in some subtypes of B cell leukemia or lymphoma, there are many challenges that limit the therapeutic efficacy of CAR T cells in solid tumors. And how to efficiently transport CAR T cells to tumor tissues is a continuing concern for us. In this review, experiments have been extensively studied and compared. We finally compared the influence of different injection methods on therapeutic efficacy. We also carefully explored the difficulties of designing, homing, and working of CAR T cells, and ultimately came up with better solutions for each process to help CAR T cells reach tumor tissue more efficiently and quickly. These results will have significant implications for guiding CAR T cell therapy in cancer treatment.


Assuntos
Leucemia Linfocítica Crônica de Células B , Neoplasias , Humanos , Imunoterapia Adotiva/métodos , Linfócitos T , Neoplasias/terapia , Imunoterapia , Microambiente Tumoral
11.
Microsyst Nanoeng ; 9: 57, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180453

RESUMO

Non-small cell lung cancer (NSCLC) is a leading cause of cancer mortality worldwide. Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have dramatically improved the life expectancy of patients with NSCLC, concerns about TKI-induced cardiotoxicities have increased. AC0010, a novel third-generation TKI, was developed to overcome drug resistance induced by EGFR-T790M mutation. However, the cardiotoxicity of AC0010 remains unclear. To evaluate the efficacy and cardiotoxicity of AC0010, we designed a novel multifunctional biosensor by integrating microelectrodes (MEs) and interdigital electrodes (IDEs) to comprehensively evaluate cell viability, electrophysiological activity, and morphological changes (beating of cardiomyocytes). The multifunctional biosensor can monitor AC0010-induced NSCLC inhibition and cardiotoxicity in a quantitative, label-free, noninvasive, and real-time manner. AC0010 was found to significantly inhibit NCI-H1975 (EGFR-L858R/T790M mutation), while weak inhibition was found for A549 (wild-type EGFR). Negligible inhibition was found in the viabilities of HFF-1 (normal fibroblasts) and cardiomyocytes. With the multifunctional biosensor, we found that 10 µM AC0010 significantly affected the extracellular field potential (EFP) and mechanical beating of cardiomyocytes. The amplitude of EFP continuously decreased after AC0010 treatment, while the interval decreased first and then increased. We analyzed the change in the systole time (ST) and diastole time (DT) within a beating interval and found that the DT and DT/beating interval rate decreased within 1 h after AC0010 treatment. This result probably indicated that the relaxation of cardiomyocytes was insufficient, which may further aggravate the dysfunction. Here, we found that AC0010 significantly inhibited EGFR-mutant NSCLC cells and impaired cardiomyocyte function at low concentrations (10 µM). This is the first study in which the risk of AC0010-induced cardiotoxicity was evaluated. In addition, novel multifunctional biosensors can comprehensively evaluate the antitumor efficacy and cardiotoxicity of drugs and candidate compounds.

12.
Front Plant Sci ; 14: 1132881, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063208

RESUMO

Temperature affects seed germination and seedling growth, which is a critical and complex stage in plant life cycle. However, comprehensive metabolic basis on temperature implicating seed germination and seedling growth remains less known. Here, we applied the high-throughput untargeted metabolomic and advanced shotgun lipidomic approaches to profile the Arabidopsis 182 metabolites and 149 lipids under moderate (22°C, 28°C) and extreme high (34°C, 40°C) temperatures. Our results showed that a typical feature of the metabolism related to organic acids/derivates and amines was obviously enriched at the moderate temperature, which was implicated in many cellular responses towards tricarboxylic acid cycle (TCA), carbohydrates and amino acids metabolism, peptide biosynthesis, phenylpropanoid biosynthesis and indole 3-acetate (IAA) biosynthetic pathway. Whereas, under extreme high temperatures, there was no seed germination, but 148 out of total 182 metabolites were highly enriched, involving in the galactose metabolism, fatty acid degradation, tryptophan/phenylalanine metabolism, and shikimic acid-mediated pathways especially including alkaloids metabolism and glucosinolate/flavone/flavonol biosynthesis. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) also exhibited the gradually increased tendency from moderate temperatures to extreme high temperatures; whereas phosphatidylserine (PS), phosphatidic acid (PA), phosphatidylglycerol (PG), monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol (SQDG) were contrary to decrease. Another typical feature of the distinguished metabolites between 22°C and 28°C, the TCA, disaccharides, nucleotides, polypeptides, SQDG and the biosynthesis of fatty acids and glucobrassicin-mediated IAA were obviously decreased at 28°C, while amino acids, trisaccharides, PE, PC, PA, PS, MGDG, DGDG and diacylglycerol (DAG) preferred to enrich at 28°C, which characterized the alteration of metabolites and lipids during fast seedling growth. Taking together, our results provided the comprehensive metabolites phenotyping, revealed the characteristics of metabolites necessary for seed germination and/or seedling growth under different temperatures, and provided insights into the different metabolic regulation of metabolites and lipid homeostasis for seed germination and seedling growth.

13.
Front Pharmacol ; 14: 1177068, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063276

RESUMO

Leukemia is a malignancy initiated by uncontrolled proliferation of hematopoietic stem cell from the B and T lineages, resulting in destruction of hematopoietic system. The conventional leukemia treatments induce severe toxic and a long series of unwanted side-effects which are caused by lack of specificity of anti-leukemic drugs. Recently, nanotechnology have shown tremendous application and clinical impact with respect to diagnosis and treatment of leukemia. According to considerable researches in the context of finding new nanotechnological platform, iron oxide nanoparticles have been gained increasing attention for the leukemia patients use. In this review, a short introduction of leukemia is described followed by the evaluation of the current approaches of iron oxide nanoparticles applied in the leukemia detection and treatment. The enormous advantages of iron oxide nanoparticles for leukemia have been discussed, which consist of the detection of magnetic resonance imaging (MRI) as efficient contrast agents, magnetic biosensors and targeted delivery of anti-leukemia drugs by coating different targeting moieties. In addition, this paper will briefly describe the application of iron oxide nanoparticles in the combined treatment of leukemia. Finally, the shortcomings of the current applications of iron-based nanoparticles in leukemia diagnosis and treatment will be discussed in particular.

14.
Med Oncol ; 40(5): 130, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36971873

RESUMO

Enhanced expression of fat mass and obesity-associated protein (FTO) has been reported in gastric cancer (GC). Bioinformatical studies indicate that FTO expression is correlated with the patients' overall survival (OS). How FTO exerts its promotion effects on GC development and affects OS remains largely unknown. In this study, the prognostic relevance of FTO expression in human GC tissues and the molecular mechanisms underlying FTO's promotion roles were investigated. Kaplan-Meier survival curve analysis revealed that the patients with high FTO levels had shorter OS compared to those with low FTO expression (p < 0.0001). Univariate and multivariate COX regression analyses showed that the patients' OS was affected by FTO status (p < 0.0001, p = 0.001, respectively). FTO knockdown in HGC27 cells by shRNAs reduced cell proliferation, colony formation, migration and invasion, while FTO overexpression in AGS cells had reverse effects. FTO knockdown in HGC27 cells also suppressed the tumor growth in a mouse xenograft model. High-throughput transcriptome sequencing indicated that FTO enhanced the PI3K/Akt signaling, which was confirmed in vitro. In summary, our research revealed that FTO is a potent prognostic biomarker of GC. FTO enhances the PI3K/Akt signaling and thus, promotes GC development.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Neoplasias Gástricas , Animais , Humanos , Camundongos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
15.
J Med Chem ; 66(9): 6070-6081, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-36892138

RESUMO

Proteolysis-targeting chimera (PROTAC) technology has emerged as a potential strategy to degrade "undruggable" proteins in recent years. Nrf2, an aberrantly activated transcription factor in cancer, is generally considered undruggable as lacking active sites or allosteric pockets. Here, we constructed the chimeric molecule C2, which consists of an Nrf2-binding element and a CRBN ligand, as a first-in-class Nrf2 degrader. Surprisingly, C2 was found to selectively degrade an Nrf2-MafG heterodimer simultaneously via the ubiquitin-proteasome system. C2 impeded Nrf2-ARE transcriptional activity significantly and improved the sensitivity of NSCLC cells to ferroptosis and therapeutic drugs. The degradation character of ARE-PROTACs suggests that the PROTAC hijacking the transcription element of TFs could achieve co-degradation of the transcription complex.


Assuntos
Fator 2 Relacionado a NF-E2 , Quimera de Direcionamento de Proteólise , Regulação da Expressão Gênica , Fator 2 Relacionado a NF-E2/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Fator de Transcrição MafG/metabolismo
16.
Cell Death Dis ; 14(2): 148, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810285

RESUMO

miR-17-5p has been found to be involved in the proliferation and metastasis of colorectal cancer (CRC), and N6-methyladenosine (m6A) modification is the most common RNA modification in eukaryotes. However, whether miR-17-5p contributes to chemotherapy sensitivity in CRC via m6A modification is unclear. In this study, we found that overexpression of miR-17-5p led to less apoptosis and lower drug sensitivity in vitro and in vivo under the 5-fluorouracil (5-FU) treatment, which indicated miR-17-5p led to 5-FU chemotherapy resistance. Bioinformatic analysis suggested that miR-17-5p-mediated chemoresistance was associated with mitochondrial homeostasis. miR-17-5p directly bound to the 3' untranslated region of Mitofusin 2 (MFN2), leading to decreased mitochondrial fusion and enhanced mitochondrial fission and mitophagy. Meanwhile, methyltransferase-like protein 14 (METTL14) was downregulated in CRC, resulting in lower m6A level. Moreover, the low level of METTL14 promoted the expression of pri-miR-17 and miR-17-5p. Further experiments suggested that m6A mRNA methylation initiated by METTL14 inhibits pri-miR-17 mRNA decay via reducing the recognition of YTHDC2 to the "GGACC" binding site. The METTL14/miR-17-5p/MFN2 signaling axis may play a critical role in 5-FU chemoresistance in CRC.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Colorretais/patologia , MicroRNAs/genética , Fluoruracila/farmacologia , Metiltransferases/metabolismo , Homeostase , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética
17.
Cancer Nurs ; 46(4): 270-283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35482525

RESUMO

BACKGROUND: Advanced cancers qualify as severe stressors to family caregivers (FCGs), which can negatively impact caregivers' psychological and physical well-being because of their association with high symptom burden, distress, and poor prognosis. OBJECTIVE: This review aims to synthesize FCGs' experiences of caring for advanced cancer patients using a qualitative systematic review method. METHODS: A comprehensive search was conducted in 7 databases from inception until July 2020. Two reviewers independently screened and assessed each study using Joanna Briggs Institute instruments and subsequently undertook the meta-aggregation approach to synthesize findings. RESULTS: A total of 26 studies were included, refined to 37 findings, and integrated into 9 categories and 5 synthesized findings. When a loved one with advanced cancer faced deterioration near the end of their life, FCGs showed a tremendous sense of responsibility for care and concerted great efforts to alleviate their loved one's suffering while lacking effective professional support. Cultural beliefs had a great impact on FCGs' responsibility and role recognition. Ultimately, the caregiving helped FCGs achieve personal transcendence inherent in their unique experience. CONCLUSIONS: Caring for advanced cancer patients is a unique, culture-specific experience marked by struggle. Effective professional support, including early palliative care, should be considered to improve the FCGs' experience of caring for advanced cancer patients. Cultural beliefs should be considered to understand and develop appropriate strategies to support FCGs. IMPLICATIONS FOR PRACTICE: Healthcare providers need to ensure that individualized, multifaceted interventions considering FCGs' needs are delivered at the optimal time with the appropriate approach.


Assuntos
Enfermagem de Cuidados Paliativos na Terminalidade da Vida , Neoplasias , Humanos , Cuidadores/psicologia , Neoplasias/terapia , Cuidados Paliativos , Ansiedade , Pesquisa Qualitativa
18.
Gels ; 8(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36286185

RESUMO

In recent years, the treatment of textile waste has attracted more and more attention around the world. The reuse of textile waste can contribute to the reduction of carbon emissions and the sustainable development of the economy. Herein, we proposed a facile and cost-effective approach to fabricating aerogel by using textile waste fibers as the matrix and polyvinyl alcohol (PVA) and glutaraldehyde (GA) as crosslinking agents. After being modified with methyltrimethoxysilane (MTMS) via chemical vapor deposition, both the interior and exterior of the textile waste aerogels exhibit a hydrophobic property with a water contact angle of up to 136.9° ± 2.3°. A comprehensive investigation of the structure, thermal properties, mechanical properties and oil absorption capacity of this aerogel shows its potential for building insulation and oil spill cleanup. The textile waste fibers aerogels have low density and high porosity, good thermal stability and outstanding heat insulation properties (Kavg. = 0.049-0.061 W/m·K). With a maximum oil absorption value of 26.9 ± 0.6 g/g and rapid and effective oil/water mixture separation, the aerogel exhibits competitive commercial application value.

19.
Front Pharmacol ; 13: 966012, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034776

RESUMO

Autophagy is a self-degradation process in which damaged proteins and organelles are engulfed into autophagosomes for digestion and eventually recycled for cellular metabolism to maintain intracellular homeostasis. Accumulating studies have reported that autophagy has the Janus role in cancer as a tumor suppressor or an oncogenic role to promote the growth of established tumors and developing drug resistance. Importantly, cytoprotective autophagy plays a prominent role in many types of human cancers, thus inhibiting autophagy, and has been regarded as a promising therapeutic strategy for cancer therapy. Here, we focus on summarizing small-molecule compounds inhibiting the autophagy process, as well as further discuss other dual-target small-molecule compounds, combination strategies, and other strategies to improve potential cancer therapy. Therefore, these findings will shed new light on exploiting more small-molecule compounds inhibiting cytoprotective autophagy as candidate drugs for fighting human cancers in the future.

20.
Int J Nanomedicine ; 17: 2041-2067, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571258

RESUMO

Cancer is the second leading cause of death in the world, behind only cardiovascular diseases, and is one of the most serious diseases threatening human health nowadays. Cancer patients' lives are being extended by the use of contemporary medical technologies, such as surgery, radiotherapy, and chemotherapy. However, these treatments are not always effective in extending cancer patients' lives. Simultaneously, these approaches are often accompanied with a series of negative consequences, such as the occurrence of adverse effects and an increased risk of relapse. As a result, the development of a novel cancer-eradication strategy is still required. The emergence of nanomedicine as a promising technology brings a new avenue for the circumvention of limitations of conventional cancer therapies. Gold nanoparticles (AuNPs), in particular, have garnered extensive attention due to their many specific advantages, including customizable size and shape, multiple and useful physicochemical properties, and ease of functionalization. Based on these characteristics, many therapeutic and diagnostic applications of AuNPs have been exploited, particularly for malignant tumors, such as drug and nucleic acid delivery, photodynamic therapy, photothermal therapy, and X-ray-based computed tomography imaging. To leverage the potential of AuNPs, these applications demand a comprehensive and in-depth overview. As a result, we discussed current achievements in AuNPs in anticancer applications in a more methodical manner in this review. Also addressed in depth are the present status of clinical trials, as well as the difficulties that may be encountered when translating some basic findings into the clinic, in order to serve as a reference for future studies.


Assuntos
Nanopartículas Metálicas , Neoplasias , Fotoquimioterapia , Ouro/química , Ouro/uso terapêutico , Humanos , Nanopartículas Metálicas/química , Nanomedicina/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Fotoquimioterapia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA