Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 239(2): e31179, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219077

RESUMO

Type 2 taste receptors (TAS2Rs), traditionally known for their role in bitter taste perception, are present in diverse reproductive tissues of both sexes. This review explores our current understanding of TAS2R functions with a particular focus on reproductive health. In males, TAS2Rs are believed to play potential roles in processes such as sperm chemotaxis and male fertility. Genetic insights from mouse models and human polymorphism studies provide some evidence for their contribution to male infertility. In female reproduction, it is speculated that TAS2Rs influence the ovarian milieu, shaping the functions of granulosa and cumulus cells and their interactions with oocytes. In the uterus, TAS2Rs contribute to uterine relaxation and hold potential as therapeutic targets for preventing preterm birth. In the placenta, they are proposed to function as vigilant sentinels, responding to infection and potentially modulating mechanisms of fetal protection. In the cervix and vagina, their analogous functions to those in other extraoral tissues suggest a potential role in infection defense. In addition, TAS2Rs exhibit altered expression patterns that profoundly affect cancer cell proliferation and apoptosis in reproductive cancers. Notably, TAS2R agonists show promise in inducing apoptosis and overcoming chemoresistance in these malignancies. Despite these advances, challenges remain, including a lack of genetic and functional studies. The application of techniques such as single-cell RNA sequencing and clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated endonuclease 9 gene editing could provide deeper insights into TAS2Rs in reproduction, paving the way for novel therapeutic strategies for reproductive disorders.


Assuntos
Papilas Gustativas , Animais , Humanos , Camundongos , Genitália , Receptores Acoplados a Proteínas G/metabolismo , Sêmen , Paladar/genética , Papilas Gustativas/metabolismo
2.
Front Physiol ; 12: 744745, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803733

RESUMO

Adenomyosis is a debilitating gynecological disease of the uterus with no medicinal cure. The tissue injury and repair hypothesis for adenomyosis suggests that uterine hyperperistalsis or dysperistalsis plays a pivotal role in establishing adenomyotic lesions. However, specific impairments in uterine peristalsis and the underlying cellular signals for these changes in adenomyosis remain elusive. Here, we report a precision-cut uterine slice preparation that preserves in vivo uterine architecture and generates peristalsis similar to that seen in the whole uterus. We found that uterine peristalsis in neonatal mice at day 14 and adult mice at day 55 presents as bursts with multiple peaks induced by intracellular Ca2+ oscillations. Using a mouse model of adenomyosis induced by tamoxifen, a selective estrogen receptor modulator, we discovered that uterine peristalsis and Ca2+ oscillations from adenomyotic uteri on days 14 and 55 become spikes (single peaks) with smaller amplitudes. The peak frequency of Ca2+ oscillations or peristalsis does not show a difference between control and adenomyotic mice. However, both the estimated force generated by uterine peristalsis and the total Ca2+ raised by Ca2+ oscillations are smaller in uteri from adenomyotic mice. Uteri from adenomyotic mice on day 14, but not on day 55, exhibit hyperresponsiveness to oxytocin. Embryo implantations are decreased in adenomyotic adult mice. Our results reveal a mode switch from bursts to spikes (rather than an increased peak frequency) of uterine Ca2+ oscillations and peristalsis and concurrent hyperresponsiveness to oxytocin in the neonatal stage are two characteristics of adenomyosis. These characteristics may contribute to embryo implantation impairments and decreased fertility in adenomyosis.

3.
Proc Natl Acad Sci U S A ; 116(14): 7043-7052, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30894498

RESUMO

A human cytomegalovirus (HCMV) pentameric glycoprotein complex (PC), gH-gL-UL128-UL130-UL131A, is necessary for viral infection of clinically relevant cell types, including epithelial cells, which are important for interhost transmission and disease. We performed genome-wide CRISPR/Cas9 screens of different cell types in parallel to identify host genes specifically required for HCMV infection of epithelial cells. This effort identified a multipass membrane protein, OR14I1, as a receptor for HCMV infection. This olfactory receptor family member is required for HCMV attachment, entry, and infection of epithelial cells and is dependent on the presence of viral PC. OR14I1 is required for AKT activation and mediates endocytosis entry of HCMV. We further found that HCMV infection of epithelial cells is blocked by a synthetic OR14I1 peptide and inhibitors of adenylate cyclase and protein kinase A (PKA) signaling. Identification of OR14I1 as a PC-dependent HCMV host receptor associated with epithelial tropism and the role of the adenylate cyclase/PKA/AKT-mediated signaling pathway in HCMV infection reveal previously unappreciated targets for the development of vaccines and antiviral therapies.


Assuntos
Citomegalovirus/fisiologia , Células Epiteliais/metabolismo , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Proteínas Virais/metabolismo , Tropismo Viral/fisiologia , Células A549 , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Células HEK293 , Células HeLa , Humanos , Complexos Multiproteicos/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Virais/genética
4.
PLoS One ; 8(3): e58634, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23484044

RESUMO

Clostridium difficile toxin B (TcdB) intoxicates target cells by glucosylating Rho GTPases. TcdB (269 kDa) consists of at least 4 functional domains including a glucosyltransferase domain (GTD), a cysteine protease domain (CPD), a translocation domain (TD), and a receptor binding domain (RBD). The function and molecular mode of action of the TD, which is the largest segment of TcdB and comprises nearly 50% of the protein, remain largely unknown. Here we show that a 97-amino-acid segment (AA1756 - 1852, designated as ?97 or D97), located in the C-terminus of the TD and adjacent to the RBD, is essential for the cellular activity of TcdB. Deletion of this segment in TcdB (designated as TxB-D97), did not adversely alter toxin enzymatic activities or its cellular binding and uptake capacity. TxB-D97 bound to and entered cells in a manner similar to TcdB holotoxin. Both wild type and mutant toxins released their GTDs similarly in the presence of inositol hexakisphosphate (InsP6), and showed a similar glucosyltransferase activity in a cell-free glucosylating assay. Despite these similarities, the cytotoxic activity of TxB-D97 was reduced by more than 5 logs compared to wild type toxin, supported by the inability of TxB-D97 to glucosylate Rac1 of target cells. Moreover, the mutant toxin failed to elicit tumor necrosis factor alpha (TNF-α) in macrophages, a process dependent on the glucosyltransferase activity of the toxin. Cellular fractionation of toxin-exposed cells revealed that TxB-D97 was unable to efficiently release the GTD into cytosol. Thereby, we conclude the 97-amino-acid region of the TD C-terminus of TcdB adjacent to the RBD, is essential for the toxicity of TcdB.


Assuntos
Sequência de Aminoácidos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Animais , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Bioensaio , Fracionamento Celular , Cisteína Proteases/metabolismo , Primers do DNA/genética , Fluorescência , Glucosiltransferases/metabolismo , Imunoprecipitação , Estimativa de Kaplan-Meier , Camundongos , Reação em Cadeia da Polimerase , Estrutura Terciária de Proteína/genética , Sais de Tetrazólio , Tiazóis , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA