Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 24(9): 1154-1167, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37278116

RESUMO

The soilborne bacterial pathogen Ralstonia solanacearum is one of the most destructive plant pathogens worldwide, and its infection process involves the manipulation of numerous plant cellular functions. In this work, we found that the R. solanacearum effector protein RipD partially suppressed different levels of plant immunity triggered by R. solanacearum elicitors, including specific responses triggered by pathogen-associated molecular patterns and secreted effectors. RipD localized in different subcellular compartments in plant cells, including vesicles, and its vesicular localization was enriched in cells undergoing R. solanacearum infection, suggesting that this specific localization may be particularly relevant during infection. Among RipD-interacting proteins, we identified plant vesicle-associated membrane proteins (VAMPs). We also found that overexpression of Arabidopsis thaliana VAMP721 and VAMP722 in Nicotiana benthamiana leaves promoted resistance to R. solanacearum, and this was abolished by the simultaneous expression of RipD, suggesting that RipD targets VAMPs to contribute to R. solanacearum virulence. Among proteins secreted in VAMP721/722-containing vesicles, CCOAOMT1 is an enzyme required for lignin biosynthesis, and mutation of CCOAOMT1 enhanced plant susceptibility to R. solanacearum. Altogether our results reveal the contribution of VAMPs to plant resistance against R. solanacearum and their targeting by a bacterial effector as a pathogen virulence strategy.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ralstonia solanacearum , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Doenças das Plantas/microbiologia , Plantas/metabolismo , Nicotiana/microbiologia , Imunidade Vegetal/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
2.
Mol Plant Pathol ; 22(1): 145-150, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33174685

RESUMO

Plant immune signalling activated by the perception of pathogen-associated molecular patterns (PAMPs) or effector proteins is mediated by pattern-recognition receptors (PRRs) and nucleotide-binding and leucine-rich repeat domain-containing receptors (NLRs), which often share cellular components and downstream responses. Many PRRs are leucine-rich repeat receptor-like kinases (LRR-RLKs), which mostly perceive proteinaceous PAMPs. The suppressor of the G2 allele of skp1 (SGT1) is a core immune regulator required for the activation of NLR-mediated immunity. In this work, we examined the requirement of SGT1 for immune responses mediated by several LRR-RLKs in both Nicotiana benthamiana and Arabidopsis. Using complementary genetic approaches, we found that SGT1 is not limiting for early PRR-dependent responses or antibacterial immunity. We therefore conclude that SGT1 does not play a significant role in bacterial PAMP-triggered immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Glucosiltransferases/metabolismo , Nicotiana/genética , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Glucosiltransferases/genética , Moléculas com Motivos Associados a Patógenos/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios Proteicos , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Nicotiana/imunologia , Nicotiana/microbiologia
3.
Plant Commun ; 1(4): 100025, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33367244

RESUMO

Effector proteins delivered inside plant cells are powerful weapons for bacterial pathogens, but this exposes the pathogen to potential recognition by the plant immune system. Therefore, the effector repertoire of a given pathogen must be balanced for a successful infection. Ralstonia solanacearum is an aggressive pathogen with a large repertoire of secreted effectors. One of these effectors, RipE1, is conserved in most R. solanacearum strains sequenced to date. In this work, we found that RipE1 triggers immunity in N. benthamiana, which requires the immune regulator SGT1, but not EDS1 or NRCs. Interestingly, RipE1-triggered immunity induces the accumulation of salicylic acid (SA) and the overexpression of several genes encoding phenylalanine-ammonia lyases (PALs), suggesting that the unconventional PAL-mediated pathway is responsible for the observed SA biosynthesis. Surprisingly, RipE1 recognition also induces the expression of jasmonic acid (JA)-responsive genes and JA biosynthesis, suggesting that both SA and JA may act cooperatively in response to RipE1. We further found that RipE1 expression leads to the accumulation of glutathione in plant cells, which precedes the activation of immune responses. R. solanacearum secretes another effector, RipAY, which is known to inhibit immune responses by degrading cellular glutathione. Accordingly, RipAY inhibits RipE1-triggered immune responses. This work shows a strategy employed by R. solanacearum to counteract the perception of its effector proteins by plant immune system.


Assuntos
Proteínas Fúngicas/genética , Nicotiana/imunologia , Imunidade Vegetal , Ralstonia solanacearum/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteínas Fúngicas/metabolismo , Ralstonia solanacearum/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Nicotiana/microbiologia
4.
Cell Host Microbe ; 28(4): 548-557.e7, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32735848

RESUMO

Many bacterial plant pathogens employ a type III secretion system to inject effector proteins within plant cells to suppress plant immunity. Whether and how effector proteins also co-opt plant metabolism to support extensive bacterial replication remains an open question. Here, we show that Ralstonia solanacearum, the causal agent of bacterial wilt disease, secretes the effector protein RipI, which interacts with plant glutamate decarboxylases (GADs) to alter plant metabolism and support bacterial growth. GADs are activated by calmodulin and catalyze the biosynthesis of gamma-aminobutyric acid (GABA), an important signaling molecule in plants and animals. RipI promotes the interaction of GADs with calmodulin, enhancing the production of GABA. R. solanacearum is able to replicate efficiently using GABA as a nutrient, and both RipI and plant GABA contribute to a successful infection. This work reveals a pathogenic strategy to hijack plant metabolism for the biosynthesis of nutrients that support microbial growth during plant colonization.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Interações Hospedeiro-Patógeno/fisiologia , Plantas/efeitos dos fármacos , Plantas/metabolismo , Arabidopsis , Solanum lycopersicum , Doenças das Plantas/imunologia , Imunidade Vegetal , Plantas/imunologia , Plantas/microbiologia , Ralstonia solanacearum/crescimento & desenvolvimento , Ralstonia solanacearum/metabolismo , Nicotiana , Sistemas de Secreção Tipo III/metabolismo , Virulência , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA