Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Chem Commun (Camb) ; 58(15): 2496-2499, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35084407

RESUMO

Five nickel chalcogenides have been studied and they showed high selectivity towards selective ethanol electro-oxidation to acetic acid. The activities of the different nickel chalcogenides are correlated with the Ni-Ni projected distances of the catalysts.

3.
Nat Commun ; 9(1): 5422, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575726

RESUMO

Efficient, durable and inexpensive electrocatalysts that accelerate sluggish oxygen reduction reaction kinetics and achieve high-performance are highly desirable. Here we develop a strategy to fabricate a catalyst comprised of single iron atomic sites supported on a nitrogen, phosphorus and sulfur co-doped hollow carbon polyhedron from a metal-organic framework@polymer composite. The polymer-based coating facilitates the construction of a hollow structure via the Kirkendall effect and electronic modulation of an active metal center by long-range interaction with sulfur and phosphorus. Benefiting from structure functionalities and electronic control of a single-atom iron active center, the catalyst shows a remarkable performance with enhanced kinetics and activity for oxygen reduction in both alkaline and acid media. Moreover, the catalyst shows promise for substitution of expensive platinum to drive the cathodic oxygen reduction reaction in zinc-air batteries and hydrogen-air fuel cells.

4.
Chemistry ; 24(45): 11748-11754, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-29870074

RESUMO

The phase of nanocrystals has a key role in the modulation of catalytic properties. Uniform and well-crystallized nickel phosphide nanocrystals with controlled phases (Ni5 P4 , Ni2 P, and Ni12 P5 ) and narrow size distributions are synthesized by a wet chemical method. The phases of the as-synthesized nickel phosphide nanocrystals are controlled by the P/Ni precursor molar ratio, heating process, and time of reaction. Rarely reported nearly monodisperse 5.6 nm Ni5 P4 nanocrystals are successfully synthesized and show superior hydrogen evolution reaction (HER) activity. Only a low overpotential of 103 mV is required to achieve the HER current of 10 mA cm-2 at a low catalyst loading of 0.12 mg cm-2 . The high HER activity is attributed to the high quality of the as-obtained Ni5 P4 nanocrystals, which have the electronic effect from the Ni5 P4 phase and also high surface area owing to the small particle size. A systematic study of the controlled synthesis of nickel phosphide nanocrystals is shown in this paper, and the HER catalytic activity is improved through the phase- and size-controlled synthesis of nanocrystals.

5.
Angew Chem Int Ed Engl ; 56(24): 6937-6941, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28402604

RESUMO

The development of low-cost, efficient, and stable electrocatalysts for the oxygen reduction reaction (ORR) is desirable but remains a great challenge. Herein, we made a highly reactive and stable isolated single-atom Fe/N-doped porous carbon (ISA Fe/CN) catalyst with Fe loading up to 2.16 wt %. The catalyst showed excellent ORR performance with a half-wave potential (E1/2 ) of 0.900 V, which outperformed commercial Pt/C and most non-precious-metal catalysts reported to date. Besides exceptionally high kinetic current density (Jk ) of 37.83 mV cm-2 at 0.85 V, it also had a good methanol tolerance and outstanding stability. Experiments demonstrated that maintaining the Fe as isolated atoms and incorporating nitrogen was essential to deliver the high performance. First principle calculations further attributed the high reactivity to the high efficiency of the single Fe atoms in transporting electrons to the adsorbed OH species.

6.
Nat Commun ; 7: 10141, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26762466

RESUMO

The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.

7.
J Am Chem Soc ; 136(19): 7077-84, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24761994

RESUMO

Electrochemical water splitting is a clean technology that can store the intermittent renewable wind and solar energy in H2 fuels. However, large-scale H2 production is greatly hindered by the sluggish oxygen evolution reaction (OER) kinetics at the anode of a water electrolyzer. Although many OER electrocatalysts have been developed to negotiate this difficult reaction, substantial progresses in the design of cheap, robust, and efficient catalysts are still required and have been considered a huge challenge. Herein, we report the simple synthesis and use of α-Ni(OH)2 nanocrystals as a remarkably active and stable OER catalyst in alkaline media. We found the highly nanostructured α-Ni(OH)2 catalyst afforded a current density of 10 mA cm(-2) at a small overpotential of a mere 0.331 V and a small Tafel slope of ~42 mV/decade, comparing favorably with the state-of-the-art RuO2 catalyst. This α-Ni(OH)2 catalyst also presents outstanding durability under harsh OER cycling conditions, and its stability is much better than that of RuO2. Additionally, by comparing the performance of α-Ni(OH)2 with two kinds of ß-Ni(OH)2, all synthesized in the same system, we experimentally demonstrate that α-Ni(OH)2 effects more efficient OER catalysis. These results suggest the possibility for the development of effective and robust OER electrocatalysts by using cheap and easily prepared α-Ni(OH)2 to replace the expensive commercial catalysts such as RuO2 or IrO2.

8.
Chemistry ; 12(1): 211-7, 2005 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-16259035

RESUMO

A series of nickel selenides (NiSe2 microcrystals, Ni(1-x)Se and Ni3Se2 microspheres) has been successfully synthesized through a convenient, low-temperature hydrothermal method. A good nucleation and growth environment has been created by forming a uniform and transparent solution reaction system. The compositions (including the x value of Ni(1-x)Se), phase structures, as well as the morphologies of nickel selenides, can be controlled by adjusting the Ni/Se ratio of the raw materials, the pH, the reaction temperatures and times, and so forth. The newly produced Se microspheres in the system have been used as both reactant and in situ template to the Ni(1-x)Se microspheres. It is found that Ni(1-x)Se microspheres act as the intermediate precursor during the formation of Ni3Se2 microspheres. Under certain conditions, hexagonal NiSe microspheres can be converted into rhombohedral NiSe nanowires in solution. The formation mechanisms of a series of nickel selenides has been investigated in detail by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses. This work has provided a general, simple, and effective method to control the composition, phase structure, and morphology of metal selenides in aqueous solution, which will be important for inorganic synthesis methodology and further applications of selenides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA