Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Gastroenterology ; 166(5): 886-901.e7, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38096955

RESUMO

BACKGROUND & AIMS: Metabolic and transcriptional programs respond to extracellular matrix-derived cues in complex environments, such as the tumor microenvironment. Here, we demonstrate how lysyl oxidase (LOX), a known factor in collagen crosslinking, contributes to the development and progression of cholangiocarcinoma (CCA). METHODS: Transcriptomes of 209 human CCA tumors, 143 surrounding tissues, and single-cell data from 30 patients were analyzed. The recombinant protein and a small molecule inhibitor of the LOX activity were used on primary patient-derived CCA cultures to establish the role of LOX in migration, proliferation, colony formation, metabolic fitness, and the LOX interactome. The oncogenic role of LOX was further investigated by RNAscope and in vivo using the AKT/NICD genetically engineered murine CCA model. RESULTS: We traced LOX expression to hepatic stellate cells and specifically hepatic stellate cell-derived inflammatory cancer-associated fibroblasts and found that cancer-associated fibroblast-driven LOX increases oxidative phosphorylation and metabolic fitness of CCA, and regulates mitochondrial function through transcription factor A, mitochondrial. Inhibiting LOX activity in vivo impedes CCA development and progression. Our work highlights that LOX alters tumor microenvironment-directed transcriptional reprogramming of CCA cells by facilitating the expression of the oxidative phosphorylation pathway and by increasing stemness and mobility. CONCLUSIONS: Increased LOX is driven by stromal inflammatory cancer-associated fibroblasts and correlates with diminished survival of patients with CCA. Modulating the LOX activity can serve as a novel tumor microenvironment-directed therapeutic strategy in bile duct pathologies.


Assuntos
Neoplasias dos Ductos Biliares , Fibroblastos Associados a Câncer , Colangiocarcinoma , Células Estreladas do Fígado , Proteína-Lisina 6-Oxidase , Microambiente Tumoral , Humanos , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/enzimologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Fibroblastos Associados a Câncer/enzimologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/enzimologia , Regulação Neoplásica da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Células Estreladas do Fígado/enzimologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/enzimologia , Fosforilação Oxidativa , Proteína-Lisina 6-Oxidase/metabolismo , Proteína-Lisina 6-Oxidase/genética , Transdução de Sinais
2.
J Hepatol ; 79(1): 93-108, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36868481

RESUMO

BACKGROUND & AIMS: Cholangiocarcinoma (CCA), heterogeneous biliary tumours with dismal prognosis, lacks accurate early diagnostic methods especially important for individuals at high-risk (i.e. those with primary sclerosing cholangitis [PSC]). Here, we searched for protein biomarkers in serum extracellular vesicles (EVs). METHODS: EVs from patients with isolated PSC (n = 45), concomitant PSC-CCA (n = 44), PSC who developed CCA during follow-up (PSC to CCA; n = 25), CCAs from non-PSC aetiology (n = 56), and hepatocellular carcinoma (n = 34) and healthy individuals (n = 56) were characterised by mass spectrometry. Diagnostic biomarkers for PSC-CCA, non-PSC CCA, or CCAs regardless of aetiology (Pan-CCAs) were defined and validated by ELISA. Their expression was evaluated in CCA tumours at a single-cell level. Prognostic EV biomarkers for CCA were investigated. RESULTS: High-throughput proteomics of EVs identified diagnostic biomarkers for PSC-CCA, non-PSC CCA, or Pan-CCA, and for the differential diagnosis of intrahepatic CCA and hepatocellular carcinoma, which were cross-validated by ELISA using total serum. Machine learning-based algorithms disclosed CRP/FIBRINOGEN/FRIL for the diagnosis of PSC-CCA (local disease [LD]) vs. isolated PSC (AUC = 0.947; odds ratio [OR] =36.9) and, combined with carbohydrate antigen 19-9, overpowers carbohydrate antigen 19-9 alone. CRP/PIGR/VWF allowed the diagnosis of LD non-PSC CCAs vs. healthy individuals (AUC = 0.992; OR = 387.5). It is noteworthy that CRP/FRIL accurately diagnosed LD Pan-CCA (AUC = 0.941; OR = 89.4). Levels of CRP/FIBRINOGEN/FRIL/PIGR showed predictive capacity for CCA development in PSC before clinical evidence of malignancy. Multi-organ transcriptomic analysis revealed that serum EV biomarkers were mostly expressed in hepatobiliary tissues, and single-cell RNA sequencing and immunofluorescence analysis of CCA tumours showed their presence mainly in malignant cholangiocytes. Multivariable analysis unveiled EV prognostic biomarkers, with COMP/GNAI2/CFAI and ACTN1/MYCT1/PF4V associated negatively and positively with patients' survival, respectively. CONCLUSIONS: Serum EVs contain protein biomarkers for the prediction, early diagnosis, and prognostication of CCA that are detectable using total serum, representing a tumour cell-derived liquid biopsy tool for personalised medicine. IMPACT AND IMPLICATIONS: The accuracy of current imaging tests and circulating tumour biomarkers for cholangiocarcinoma (CCA) diagnosis is far from satisfactory. Most CCAs are considered sporadic, although up to 20% of patients with primary sclerosing cholangitis (PSC) develop CCA during their lifetime, constituting a major cause of PSC-related death. This international study has proposed protein-based and aetiology-related logistic models with predictive, diagnostic, or prognostic capacities by combining two to four circulating protein biomarkers, moving a step forward into personalised medicine. These novel liquid biopsy tools may allow the (i) easy and non-invasive diagnosis of sporadic CCAs, (ii) identification of patients with PSC with higher risk for CCA development, (iii) establishment of cost-effective surveillance programmes for the early detection of CCA in high-risk populations (e.g. PSC), and (iv) prognostic stratification of patients with CCA, which, altogether, may increase the number of cases eligible for potentially curative options or to receive more successful treatments, decreasing CCA-related mortality.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Colangite Esclerosante , Neoplasias Hepáticas , Humanos , Colangite Esclerosante/complicações , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/complicações , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/etiologia , Colangiocarcinoma/metabolismo , Biomarcadores Tumorais , Diagnóstico Precoce , Biópsia Líquida , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/complicações , Carboidratos , Proteínas Nucleares
3.
Nat Rev Gastroenterol Hepatol ; 19(6): 367-382, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35273358

RESUMO

The evolutionary history of hepatobiliary cancers is embedded in their genomes. By analysing their catalogue of somatic mutations and the DNA sequence context in which they occur, it is possible to infer the mechanisms underpinning tumorigenesis. These mutational signatures reflect the exogenous and endogenous origins of genetic damage as well as the capacity of hepatobiliary cells to repair and replicate DNA. Genomic analysis of thousands of patients with hepatobiliary cancers has highlighted the diversity of mutagenic processes active in these malignancies, highlighting a prominent source of the inter-cancer-type, inter-patient, intertumour and intratumoural heterogeneity that is observed clinically. However, a substantial proportion of mutational signatures detected in hepatocellular carcinoma and biliary tract cancer remain of unknown cause, emphasizing the important contribution of processes yet to be identified. Exploiting mutational signatures to retrospectively understand hepatobiliary carcinogenesis could advance preventative management of these aggressive tumours as well as potentially predict treatment response and guide the development of therapies targeting tumour evolution.


Assuntos
Neoplasias , Carcinogênese/genética , Transformação Celular Neoplásica , Humanos , Mutação , Estudos Retrospectivos
4.
EBioMedicine ; 73: 103661, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34740106

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is affecting more people globally. Indeed, NAFLD is a spectrum of metabolic dysfunctions that can progress to hepatocellular carcinoma (NAFLD-HCC). This development can occur in a non-cirrhotic liver and thus, often lack clinical surveillance. The aim of this study was to develop non-invasive surveillance method for NAFLD-HCC. METHODS: Using comprehensive ultra-high-performance liquid chromatography mass-spectrometry, we investigated 1,295 metabolites in serum from 249 patients. Area under the receiver operating characteristic curve was calculated for all detected metabolites and used to establish their diagnostic potential. Logistic regression analysis was used to establish the diagnostic score. FINDINGS: We show that NAFLD-HCC is characterised by a complete rearrangement of the serum lipidome, which distinguishes NAFLD-HCC from non-cancerous individuals and other HCC patients. We used machine learning to build a diagnostic model for NAFLD-HCC. We quantified predictive metabolites and developed the NAFLD-HCC Diagnostic Score (NHDS), presenting superior diagnostic potential compared to alpha-fetoprotein (AFP). Patients' metabolic landscapes show a progressive depletion in unsaturated fatty acids and acylcarnitines during transformation. Upregulation of fatty acid transporters in NAFLD-HCC tumours contribute to fatty acid depletion in the serum. INTERPRETATION: NAFLD-HCC patients can be efficiently distinguished by serum metabolic alterations from the healthy population and from HCC patients related to other aetiologies (alcohol and viral hepatitis). Our model can be used for non-invasive surveillance of individuals with metabolic syndrome(s), allowing for early detection of NAFLD-HCC. Therefore, serum metabolomics may provide valuable insight to monitor patients at risk, including morbidly obese, diabetics, and NAFLD patients. FUNDING: The funding sources for this study had no role in study design, data collection, data analyses, interpretation or writing of the report as it is presented herein.


Assuntos
Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/diagnóstico , Lipidômica , Lipídeos/sangue , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/diagnóstico , Hepatopatia Gordurosa não Alcoólica/sangue , Biomarcadores , Carcinoma Hepatocelular/etiologia , Estudos de Casos e Controles , Perfilação da Expressão Gênica/métodos , Humanos , Lipidômica/métodos , Neoplasias Hepáticas/etiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Prognóstico , Curva ROC , Reprodutibilidade dos Testes , Fluxo de Trabalho
5.
Gut ; 70(7): 1345-1361, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32907830

RESUMO

OBJECTIVE: Hepatocellular carcinoma (HCC) is a prevalent and aggressive cancer usually arising on a background of chronic liver injury involving inflammatory and hepatic regenerative processes. The triggering receptor expressed on myeloid cells 2 (TREM-2) is predominantly expressed in hepatic non-parenchymal cells and inhibits Toll-like receptor signalling, protecting the liver from various hepatotoxic injuries, yet its role in liver cancer is poorly defined. Here, we investigated the impact of TREM-2 on liver regeneration and hepatocarcinogenesis. DESIGN: TREM-2 expression was analysed in liver tissues of two independent cohorts of patients with HCC and compared with control liver samples. Experimental HCC and liver regeneration models in wild type and Trem-2-/- mice, and in vitro studies with hepatic stellate cells (HSCs) and HCC spheroids were conducted. RESULTS: TREM-2 expression was upregulated in human HCC tissue, in mouse models of liver regeneration and HCC. Trem-2-/- mice developed more liver tumours irrespective of size after diethylnitrosamine (DEN) administration, displayed exacerbated liver damage, inflammation, oxidative stress and hepatocyte proliferation. Administering an antioxidant diet blocked DEN-induced hepatocarcinogenesis in both genotypes. Similarly, Trem-2-/- animals developed more and larger tumours in fibrosis-associated HCC models. Trem-2-/- livers showed increased hepatocyte proliferation and inflammation after partial hepatectomy. Conditioned media from human HSCs overexpressing TREM-2 inhibited human HCC spheroid growth in vitro through attenuated Wnt ligand secretion. CONCLUSION: TREM-2 plays a protective role in hepatocarcinogenesis via different pleiotropic effects, suggesting that TREM-2 agonism should be investigated as it might beneficially impact HCC pathogenesis in a multifactorial manner.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética , Adulto , Idoso , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Dietilnitrosamina , Feminino , Mutação com Ganho de Função , Expressão Gênica , Células Estreladas do Fígado/metabolismo , Hepatite/metabolismo , Hepatócitos/patologia , Hepatócitos/fisiologia , Humanos , Fígado/metabolismo , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Regeneração Hepática/genética , Regeneração Hepática/fisiologia , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Estresse Oxidativo , Fatores de Proteção , RNA/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Imunológicos/metabolismo , Esferoides Celulares , Regulação para Cima , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Proteína Wnt3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA