Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(28): e2408092121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968106

RESUMO

The multinuclear nonheme iron-dependent oxidases (MNIOs) are a rapidly growing family of enzymes involved in the biosynthesis of ribosomally synthesized, posttranslationally modified peptide natural products (RiPPs). Recently, a secreted virulence factor from nontypeable Haemophilus influenzae (NTHi) was found to be expressed from an operon, which we designate the hvf operon, that also encodes an MNIO. Here, we show by Mössbauer spectroscopy that the MNIO HvfB contains a triiron cofactor. We demonstrate that HvfB works together with HvfC [a RiPP recognition element (RRE)-containing partner protein] to perform six posttranslational modifications of cysteine residues on the virulence factor precursor peptide HvfA. Structural characterization by tandem mass spectrometry and NMR shows that these six cysteine residues are converted to oxazolone and thioamide pairs, similar to those found in the RiPP methanobactin. Like methanobactin, the mature virulence factor, which we name oxazolin, uses these modified residues to coordinate Cu(I) ions. Considering the necessity of oxazolin for host cell invasion by NTHi, these findings point to a key role for copper during NTHi infection. Furthermore, oxazolin and its biosynthetic pathway represent a potential therapeutic target for NTHi.


Assuntos
Proteínas de Bactérias , Cobre , Haemophilus influenzae , Oxazolona , Fatores de Virulência , Haemophilus influenzae/metabolismo , Haemophilus influenzae/enzimologia , Haemophilus influenzae/genética , Haemophilus influenzae/patogenicidade , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Cobre/metabolismo , Cobre/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Oxazolona/metabolismo , Tioamidas/metabolismo , Tioamidas/química , Ferro/metabolismo , Processamento de Proteína Pós-Traducional , Oxirredutases/metabolismo , Oxirredutases/genética , Óperon , Cisteína/metabolismo
2.
Protein Sci ; 33(6): e4976, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38757374

RESUMO

G-protein coupled receptors (GPCRs) are the largest class of membrane proteins encoded in the human genome with high pharmaceutical relevance and implications to human health. These receptors share a prevalent architecture of seven transmembrane helices followed by an intracellular, amphipathic helix 8 (H8) and a disordered C-terminal tail (Ctail). Technological advancements have led to over 1000 receptor structures in the last two decades, yet frequently H8 and the Ctail are conformationally heterogeneous or altogether absent. Here we synthesize a peptide comprising the neurotensin receptor 1 (NTS1) H8 and Ctail (H8-Ctail) to investigate its structural stability, conformational dynamics, and orientation in the presence of detergent and phospholipid micelles, which mimic the membrane. Circular dichroism (CD) and nuclear magnetic resonance (NMR) measurements confirm that zwitterionic 1,2-diheptanoyl-sn-glycero-3-phosphocholine is a potent stabilizer of H8 structure, whereas the commonly-used branched detergent lauryl maltose neopentyl glycol (LMNG) is unable to completely stabilize the helix - even at amounts four orders of magnitude greater than its critical micellar concentration. We then used NMR spectroscopy to assign the backbone chemical shifts. A series of temperature and lipid titrations were used to define the H8 boundaries as F376-R392 from chemical shift perturbations, changes in resonance intensity, and chemical-shift-derived phi/psi angles. Finally, the H8 azimuthal and tilt angles, defining the helix orientation relative of the membrane normal were measured using paramagnetic relaxation enhancement NMR. Taken together, our studies reveal the H8-Ctail region is sensitive to membrane physicochemical properties and is capable of more adaptive behavior than previously suggested by static structural techniques.


Assuntos
Receptores de Neurotensina , Receptores de Neurotensina/química , Receptores de Neurotensina/metabolismo , Receptores de Neurotensina/genética , Humanos , Micelas , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Peptídeos/metabolismo , Dicroísmo Circular , Conformação Proteica em alfa-Hélice , Detergentes/química , Modelos Moleculares
3.
bioRxiv ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37425839

RESUMO

Targeting of the multifunctional enzyme apurinic/apyrimidinic endonuclease I/redox factor 1 (APE1) has produced small molecule inhibitors of both its endonuclease and redox activities. While one of the small molecules, the redox inhibitor APX3330, completed a Phase I clinical trial for solid tumors and a Phase II clinical trial for Diabetic Retinopathy/Diabetic Macular Edema, the mechanism of action for this drug has yet to be fully understood. Here, we demonstrate through HSQC NMR studies that APX3330 induces chemical shift perturbations (CSPs) of both surface and internal residues in a concentration-dependent manner, with a cluster of surface residues defining a small pocket on the opposite face from the endonuclease active site of APE1. Furthermore, APX3330 induces partial unfolding of APE1 as evidenced by a time-dependent loss of chemical shifts for approximately 35% of the residues within APE1 in the HSQC NMR spectrum. Notably, regions that are partially unfolded include adjacent strands within one of two beta sheets that comprise the core of APE1. One of the strands comprises residues near the N-terminal region and a second strand is contributed by the C-terminal region of APE1, which serves as a mitochondrial targeting sequence. These terminal regions converge within the pocket defined by the CSPs. In the presence of a duplex DNA substrate mimic, removal of excess APX3330 resulted in refolding of APE1. Our results are consistent with a reversible mechanism of partial unfolding of APE1 induced by the small molecule inhibitor, APX3330, defining a novel mechanism of inhibition.

4.
Nat Commun ; 14(1): 3328, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286565

RESUMO

The neurotensin receptor 1 (NTS1) is a G protein-coupled receptor (GPCR) with promise as a drug target for the treatment of pain, schizophrenia, obesity, addiction, and various cancers. A detailed picture of the NTS1 structural landscape has been established by X-ray crystallography and cryo-EM and yet, the molecular determinants for why a receptor couples to G protein versus arrestin transducers remain poorly defined. We used 13CεH3-methionine NMR spectroscopy to show that binding of phosphatidylinositol-4,5-bisphosphate (PIP2) to the receptor's intracellular surface allosterically tunes the timescale of motions at the orthosteric pocket and conserved activation motifs - without dramatically altering the structural ensemble. ß-arrestin-1 further remodels the receptor ensemble by reducing conformational exchange kinetics for a subset of resonances, whereas G protein coupling has little to no effect on exchange rates. A ß-arrestin biased allosteric modulator transforms the NTS1:G protein complex into a concatenation of substates, without triggering transducer dissociation, suggesting that it may function by stabilizing signaling incompetent G protein conformations such as the non-canonical state. Together, our work demonstrates the importance of kinetic information to a complete picture of the GPCR activation landscape.


Assuntos
Receptores Acoplados a Proteínas G , Receptores de Neurotensina , Receptores de Neurotensina/genética , Receptores de Neurotensina/metabolismo , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Arrestina/metabolismo
5.
Protein Sci ; 31(11): e4454, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36116099

RESUMO

Fluorine (19 F) offers several distinct advantages for biomolecular nuclear magnetic resonance spectroscopy such as no background signal, 100% natural abundance, high sensitivity, and a large chemical shift range. Exogenous cysteine-reactive 19 F-probes have proven especially indispensable for characterizing large, challenging systems that are less amenable to other isotopic labeling strategies such as G protein-coupled receptors. As fluorine linewidths are inherently broad, limiting reactions with offsite cysteines is critical for spectral simplification and accurate deconvolution of component peaks-especially when analyzing systems with intermediate to slow timescale conformational exchange. Here, we uncovered noncovalent probe sequestration by detergent proteomicelles as a second source of offsite labeling when using the popular 19 F-probe BTFMA (2-bromo-N-(4-[trifluoromethyl]phenyl)acetamide). The chemical shift and relaxation rates of these unreacted 19 F-BTFMA molecules are insufficient to distinguish them from protein-conjugates, but they can be easily identified using mass spectrometry. We present a simple four-step protocol for Selective Labeling Absent of Probe Sequestration (SLAPS): physically disrupt cell membranes in the absence of detergent, incubate membranes with cysteine-reactive 19 F-BTFMA, remove excess unreacted 19 F-BTFMA molecules via ultracentrifugation, and finally solubilize in the detergent of choice. Our approach builds upon the in-membrane chemical modification method with the addition of one crucial step: removal of unreacted 19 F-probes by ultracentrifugation prior to detergent solubilization. SLAPS is broadly applicable to other lipophilic cysteine-reactive probes and membrane protein classes solubilized in detergent micelles or lipid mimetics.


Assuntos
Detergentes , Flúor , Detergentes/química , Cisteína , Proteínas de Membrana/química
6.
Sci Signal ; 10(471)2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28325822

RESUMO

Chemokines orchestrate cell migration for development, immune surveillance, and disease by binding to cell surface heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs). The array of interactions between the nearly 50 chemokines and their 20 GPCR targets generates an extensive signaling network to which promiscuity and biased agonism add further complexity. The receptor CXCR4 recognizes both monomeric and dimeric forms of the chemokine CXCL12, which is a distinct example of ligand bias in the chemokine family. We demonstrated that a constitutively monomeric CXCL12 variant reproduced the G protein-dependent and ß-arrestin-dependent responses that are associated with normal CXCR4 signaling and lead to cell migration. In addition, monomeric CXCL12 made specific contacts with CXCR4 that are not present in the structure of the receptor in complex with a dimeric form of CXCL12, a biased agonist that stimulates only G protein-dependent signaling. We produced an experimentally validated model of an agonist-bound chemokine receptor that merged a nuclear magnetic resonance-based structure of monomeric CXCL12 bound to the amino terminus of CXCR4 with a crystal structure of the transmembrane domains of CXCR4. The large CXCL12:CXCR4 protein-protein interface revealed by this structure identified previously uncharacterized functional interactions that fall outside of the classical "two-site model" for chemokine-receptor recognition. Our model suggests a mechanistic hypothesis for how interactions on the extracellular face of the receptor may stimulate the conformational changes required for chemokine receptor-mediated signal transduction.


Assuntos
Quimiocina CXCL12/química , Multimerização Proteica , Receptores CXCR4/química , Transdução de Sinais , Sequência de Aminoácidos , Linhagem Celular Tumoral , Movimento Celular/genética , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Células HEK293 , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , Ligação Proteica , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo
7.
J Med Chem ; 57(22): 9693-9, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25356720

RESUMO

CXCL12 binds to CXCR4, promoting both chemotaxis of lymphocytes and metastasis of cancer cells. We previously identified small molecule ligands that bind CXCL12 and block CXCR4-mediated chemotaxis. We now report a 1.9 Å resolution X-ray structure of CXCL12 bound by such a molecule at a site normally bound by sY21 of CXCR4. The complex structure reveals binding hot spots for future inhibitor design and suggests a new approach to targeting CXCL12-CXCR4 signaling in drug discovery.


Assuntos
Antineoplásicos/química , Quimiocina CXCL12/química , Cristalografia por Raios X/métodos , Receptores CXCR4/química , Sítios de Ligação , Quimiotaxia , Desenho de Fármacos , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais , Relação Estrutura-Atividade
8.
J Am Chem Soc ; 136(39): 13494-7, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25181039

RESUMO

We report the discovery of HD5-CD, an unprecedented C2-symmetric ß-barrel-like covalent dimer of the cysteine-rich host-defense peptide human defensin 5 (HD5). Dimerization results from intermonomer disulfide exchange between the canonical α-defensin Cys(II)-Cys(IV) (Cys(5)-Cys(20)) bonds located at the hydrophobic interface. This disulfide-locked dimeric assembly provides a new element of structural diversity for cysteine-rich peptides as well as increased protease resistance, broad-spectrum antimicrobial activity, and enhanced potency against the opportunistic human pathogen Acinetobacter baumannii.


Assuntos
Antibacterianos/química , Dissulfetos/química , alfa-Defensinas/química , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/farmacologia , Dimerização , Humanos , Modelos Moleculares , Relação Estrutura-Atividade , alfa-Defensinas/síntese química , alfa-Defensinas/metabolismo
9.
ACS Chem Biol ; 8(9): 1955-63, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23802178

RESUMO

Tyrosine sulfation is a post-translational modification that enhances protein-protein interactions and may identify druggable sites in the extracellular space. The G protein-coupled receptor CXCR4 is a prototypical example with three potential sulfation sites at positions 7, 12, and 21. Each receptor sulfotyrosine participates in specific contacts with its chemokine ligand in the structure of a soluble, dimeric CXCL12:CXCR4(1-38) complex, but their relative importance for CXCR4 binding and activation by the monomeric chemokine remains undefined. NMR titrations with short sulfopeptides showed that the tyrosine motifs of CXCR4 varied widely in their contributions to CXCL12 binding affinity and site specificity. Whereas the Tyr21 sulfopeptide bound the same site as in previously solved structures, the Tyr7 and Tyr12 sulfopeptides interacted nonspecifically. Surprisingly, the unsulfated Tyr7 peptide occupied a hydrophobic site on the CXCL12 monomer that is inaccessible in the CXCL12 dimer. Functional analysis of CXCR4 mutants validated the relative importance of individual CXCR4 sulfotyrosine modifications (Tyr21 > Tyr12 > Tyr7) for CXCL12 binding and receptor activation. Biophysical measurements also revealed a cooperative relationship between sulfopeptide binding at the Tyr21 site and CXCL12 dimerization, the first example of allosteric behavior in a chemokine. Future ligands that occupy the sTyr21 recognition site may act as both competitive inhibitors of receptor binding and allosteric modulators of chemokine function. Together, our data suggests that sulfation does not ubiquitously enhance complex affinity and that distinct patterns of tyrosine sulfation could encode oligomer selectivity, implying another layer of regulation for chemokine signaling.


Assuntos
Quimiocina CXCL12/metabolismo , Peptídeos/metabolismo , Receptores CXCR4/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Quimiocina CXCL12/química , Cricetulus , Humanos , Modelos Moleculares , Peptídeos/química , Ligação Proteica , Multimerização Proteica , Receptores CXCR4/química , Tirosina/química , Tirosina/metabolismo
10.
Mol Cancer Ther ; 11(11): 2516-25, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22869557

RESUMO

The CXC chemokine receptor-4 (CXCR4) plays a critical role in cancer by positively regulating cancer cell metastasis and survival. We previously showed that high concentrations of the CXCR4 ligand, wild-type CXCL12 (wtCXCL12), could inhibit colorectal cancer metastasis in vivo, and we have hypothesized that wtCXCL12 dimerizes at high concentration to become a potent antagonist of CXCR4. To address this hypothesis, we engineered a covalently locked, dimeric variant of CXCL12 (CXCL122). Herein, we show that CXCL122 can not only inhibit implantation of lung metastasis of CXCR4-B16-F10 melanoma cells more effectively than AMD3100, but that CXCL122 also blocks the growth of established pulmonary tumors. To identify a basis for the in vivo efficacy of CXCL122, we conducted Western blot analysis and ELISA analyses, which revealed that CXCL122 was stable for at least 12 hours in serum, whereas wtCXCL12 was quickly degraded. CXCL122 also maintained its antagonist properties in in vitro chemotaxis assays for up to 24 hours in serum, whereas wtCXCL12 was ineffective after 6 hours. Heat-inactivation of serum prolonged the stability and function of wtCXCL12 by more than 6 hours, suggesting enzymatic degradation as a possible mechanism for wtCXCL12 inactivation. In vitro analysis of amino-terminal cleavage by enzymes dipeptidylpeptidase IV (DPPIV/CD26) and matrix metalloproteinase-2 (MMP-2) resulted in 25-fold and 2-fold slower degradation rates, respectively, of CXCL122 compared with wtCXCL12. In summary, our results suggest CXCL122 possesses greater potential as an antimetastatic drug as compared with AMD3100 or wtCXCL12, potentially due to enhanced serum stability in the presence of N-terminal degrading enzymes.


Assuntos
Quimiocina CXCL12/sangue , Quimiocina CXCL12/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Melanoma/patologia , Multimerização Proteica , Receptores CXCR4/metabolismo , Animais , Benzilaminas , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Quimiocina CXCL12/farmacologia , Ciclamos , Dipeptidil Peptidase 4/metabolismo , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/uso terapêutico , Humanos , Neoplasias Pulmonares/patologia , Metaloproteinase 2 da Matriz/metabolismo , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Multimerização Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Soro/metabolismo
11.
Biochemistry ; 51(3): 733-5, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22221265

RESUMO

CCL21 is a human chemokine that recruits normal immune cells and metastasizing tumor cells to lymph nodes through activation of the G protein-coupled receptor CCR7. The CCL21 structure solved by NMR contains a conserved chemokine domain followed by an extended, unstructured C-terminus that is not typical of most other chemokines. A sedimentation equilibrium study showed CCL21 to be monomeric. Chemical shift mapping indicates that the CCR7 N-terminus binds to the N-loop and third ß-strand of CCL21's chemokine domain. Details of CCL21-receptor recognition may enable structure-based drug discovery of novel antimetastatic agents.


Assuntos
Quimiocina CCL21/química , Quimiocina CCL21/metabolismo , Receptores CCR7/química , Receptores CCR7/metabolismo , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Humanos , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Terciária de Proteína
12.
Curr Top Med Chem ; 12(24): 2727-40, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23368099

RESUMO

The chemokine CXCL12 and its G protein-coupled receptor (GPCR) CXCR4 are high-priority clinical targets because of their involvement in metastatic cancers (also implicated in autoimmune disease and cardiovascular disease). Because chemokines interact with two distinct sites to bind and activate their receptors, both the GPCRs and chemokines are potential targets for small molecule inhibition. A number of chemokines have been validated as targets for drug development, but virtually all drug discovery efforts focus on the GPCRs. However, all CXCR4 receptor antagonists with the exception of MSX-122 have failed in clinical trials due to unmanageable toxicities, emphasizing the need for alternative strategies to interfere with CXCL12/CXCR4-guided metastatic homing. Although targeting the relatively featureless surface of CXCL12 was presumed to be challenging, focusing efforts at the sulfotyrosine (sY) binding pockets proved successful for procuring initial hits. Using a hybrid structure-based in silico/NMR screening strategy, we recently identified a ligand that occludes the receptor recognition site. From this initial hit, we designed a small fragment library containing only nine tetrazole derivatives using a fragment-based and bioisostere approach to target the sY binding sites of CXCL12. Compound binding modes and affinities were studied by 2D NMR spectroscopy, X-ray crystallography, molecular docking and cell-based functional assays. Our results demonstrate that the sY binding sites are conducive to the development of high affinity inhibitors with better ligand efficiency (LE) than typical protein-protein interaction inhibitors (LE ≤ 0.24). Our novel tetrazole-based fragment 18 was identified to bind the sY21 site with a K(d) of 24 µM (LE = 0.30). Optimization of 18 yielded compound 25 which specifically inhibits CXCL12-induced migration with an improvement in potency over the initial hit 9. The fragment from this library that exhibited the highest affinity and ligand efficiency (11: K(d) = 13 µM, LE = 0.33) may serve as a starting point for development of inhibitors targeting the sY12 site.


Assuntos
Antineoplásicos/química , Quimiocina CXCL12/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Receptores CXCR4/química , Bibliotecas de Moléculas Pequenas/química , Tetrazóis/química , Tirosina/análogos & derivados , Antineoplásicos/farmacologia , Sítios de Ligação , Quimiocina CXCL12/química , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/química , Ligação Proteica , Bibliotecas de Moléculas Pequenas/farmacologia , Tetrazóis/farmacologia , Tirosina/antagonistas & inibidores , Tirosina/química
13.
Proc Natl Acad Sci U S A ; 108(43): 17655-60, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-21990345

RESUMO

Chemokines and chemokine receptors are extensively and broadly involved in cancer metastasis. Previously, we demonstrated that epigenetic silencing of the chemokine CXCL12 sensitizes breast and colon cancer cells to endocrine signaling and metastasis to distant tissues. Yet, the precise mechanism whereby CXCL12 production by tumor cells regulates dissemination remains unclear. Here, we show that administration of CXCL12 extended survival of tumor-bearing mice by potently limiting metastasis of colorectal carcinoma or murine melanoma. Because secreted CXCL12 is a mixture of monomeric and dimeric species in equilibrium, oligomeric variants that either promote (monomer) or halt (dimer) chemotaxis were used to dissect the mechanisms interrupting carcinoma metastasis. Monomeric CXCL12 mobilized intracellular calcium, inhibited cAMP signaling, recruited ß-arrestin-2, and stimulated filamentous-actin accumulation and cell migration. Dimeric CXCL12 activated G-protein-dependent calcium flux, adenylyl cyclase inhibition, and the rapid activation of ERK1/2, but only weakly, if at all, recruited arrestin, stimulated actin polymerization, or promoted chemotaxis. NMR analyses illustrated that CXCL12 monomers made specific contacts with CXCR4 that were lost following dimerization. Our results establish the potential for inhibiting CXCR4-mediated metastasis by administration of CXCL12. Chemokine-mediated migration and ß-arrestin responses did not dictate the antitumor effect of CXCL12. We conclude that cellular migration is tightly regulated by selective CXCR4 signaling evoked by unique interactions with distinct ligand quaternary structures.


Assuntos
Quimiocina CXCL12/farmacologia , Neoplasias Colorretais/patologia , Metástase Neoplásica/prevenção & controle , Receptores CXCR4/metabolismo , Transdução de Sinais/efeitos dos fármacos , Actinas/metabolismo , Animais , Arrestinas/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Dimerização , Citometria de Fluxo , Humanos , Camundongos , Ressonância Magnética Nuclear Biomolecular , beta-Arrestina 2 , beta-Arrestinas
14.
Int J Mol Sci ; 12(6): 3740-56, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21747703

RESUMO

Chemokine signaling is a well-known agent of autoimmune disease, HIV infection, and cancer. Drug discovery efforts for these signaling molecules have focused on developing inhibitors targeting their associated G protein-coupled receptors. Recently, we used a structure-based approach directed at the sulfotyrosine-binding pocket of the chemokine CXCL12, and thereby demonstrated that small molecule inhibitors acting upon the chemokine ligand form an alternative therapeutic avenue. Although the 50 members of the chemokine family share varying degrees of sequence homology (some as little as 20%), all members retain the canonical chemokine fold. Here we show that an equivalent sulfotyrosine-binding pocket appears to be conserved across the chemokine superfamily. We monitored sulfotyrosine binding to four representative chemokines by NMR. The results suggest that most chemokines harbor a sulfotyrosine recognition site analogous to the cleft on CXCL12 that binds sulfotyrosine 21 of the receptor CXCR4. Rational drug discovery efforts targeting these sites may be useful in the development of specific as well as broad-spectrum chemokine inhibitors.


Assuntos
Quimiocinas CXC/química , Espaço Extracelular/metabolismo , Receptores CXCR/química , Tirosina/análogos & derivados , Sequência de Aminoácidos , Sítios de Ligação , Quimiocinas CXC/metabolismo , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Receptores CXCR/metabolismo , Alinhamento de Sequência , Tirosina/química , Tirosina/metabolismo
15.
J Am Chem Soc ; 132(21): 7242-3, 2010 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-20459090

RESUMO

CXCL12 is an attractive target for clinical therapy because of its involvement in autoimmune diseases, cancer growth, metastasis, and neovascularization. Tyrosine sulfation at three positions in the CXCR4 N-terminus is crucial for specific, high-affinity CXCL12 binding. An NMR structure of the complex between the CXCL12 dimer and a sulfotyrosine-containing CXCR4 fragment enabled high-throughput in silico screening for inhibitors of the chemokine-receptor interface. A total of 1.4 million compounds from the ZINC database were docked into a cleft on the CXCL12 surface normally occupied by sulfotyrosine 21 (sY21), and five were selected for experimental screening. NMR titrations with CXCL12 revealed that four of the compounds occupy the sY21 site, one of which binds with a K(d) of 64 microM. This compound selectively inhibits SDF1-induced CXCR4 signaling in THP1 cells. Our results suggest that sulfotyrosine recognition sites can be targeted for the development of novel chemokine inhibitors.


Assuntos
Antineoplásicos/química , Quimiocina CXCL12/antagonistas & inibidores , Desenho de Fármacos , Receptores CXCR4/antagonistas & inibidores , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Simulação por Computador , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Modelos Químicos , Receptores CXCR4/agonistas , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
16.
Protein Sci ; 18(7): 1359-69, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19551879

RESUMO

The chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) directs leukocyte migration, stem cell homing, and cancer metastasis through activation of CXCR4, which is also a coreceptor for T-tropic HIV-1. Recently, SDF-1 was shown to play a protective role after myocardial infarction, and the protein is a candidate for development of new anti-ischemic compounds. SDF-1 is monomeric at nanomolar concentrations but binding partners promote self-association at higher concentrations to form a typical CXC chemokine homodimer. Two NMR structures have been reported for the SDF-1 monomer, but only one matches the conformation observed in a series of dimeric crystal structures. In the other model, the C-terminal helix is tilted at an angle incompatible with SDF-1 dimerization. Using a rat heart explant model for ischemia/reperfusion injury, we found that dimeric SDF-1 exerts no cardioprotective effect, suggesting that the active species is monomeric. To resolve the discrepancy between existing models, we solved the NMR structure of the SDF-1 monomer in different solution conditions. Irrespective of pH and buffer composition, the C-terminal helix remains tilted at an angle with no evidence for the perpendicular arrangement. Furthermore, we find that phospholipid bicelles promote dimerization that necessarily shifts the helix to the perpendicular orientation, yielding dipolar couplings that are incompatible with the NOE distance constraints. We conclude that interactions with the alignment medium biased the previous structure, masking flexibility in the helix position that may be essential for the distinct functional properties of the SDF-1 monomer.


Assuntos
Cardiotônicos/química , Quimiocina CXCL12/química , Animais , Cardiotônicos/metabolismo , Cardiotônicos/farmacologia , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/farmacologia , Dimiristoilfosfatidilcolina/metabolismo , Modelos Animais de Doenças , Coração/efeitos dos fármacos , Histidina/química , Concentração de Íons de Hidrogênio , Micelas , Modelos Moleculares , Infarto do Miocárdio/tratamento farmacológico , Reperfusão Miocárdica , Ressonância Magnética Nuclear Biomolecular , Fosfatos/química , Éteres Fosfolipídicos/metabolismo , Multimerização Proteica , Ratos , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA