Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(27): 7533-8, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27339135

RESUMO

Spontaneous folding of a polypeptide chain into a knotted structure remains one of the most puzzling and fascinating features of protein folding. The folding of knotted proteins is on the timescale of minutes and thus hard to reproduce with atomistic simulations that have been able to reproduce features of ultrafast folding in great detail. Furthermore, it is generally not possible to control the topology of the unfolded state. Single-molecule force spectroscopy is an ideal tool for overcoming this problem: by variation of pulling directions, we controlled the knotting topology of the unfolded state of the 52-knotted protein ubiquitin C-terminal hydrolase isoenzyme L1 (UCH-L1) and have therefore been able to quantify the influence of knotting on its folding rate. Here, we provide direct evidence that a threading event associated with formation of either a 31 or 52 knot, or a step closely associated with it, significantly slows down the folding of UCH-L1. The results of the optical tweezers experiments highlight the complex nature of the folding pathway, many additional intermediate structures being detected that cannot be resolved by intrinsic fluorescence. Mechanical stretching of knotted proteins is also of importance for understanding the possible implications of knots in proteins for cellular degradation. Compared with a simple 31 knot, we measure a significantly larger size for the 52 knot in the unfolded state that can be further tightened with higher forces. Our results highlight the potential difficulties in degrading a 52 knot compared with a 31 knot.


Assuntos
Redobramento de Proteína , Desdobramento de Proteína , Ubiquitina Tiolesterase/química , Pinças Ópticas , Imagem Individual de Molécula
2.
Science ; 323(5914): 633-7, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-19179531

RESUMO

Single-molecule force spectroscopy allows superb mechanical control of protein conformation. We used a custom-built low-drift atomic force microscope to observe mechanically induced conformational equilibrium fluctuations of single molecules of the eukaryotic calcium-dependent signal transducer calmodulin (CaM). From this data, the ligand dependence of the full energy landscape can be reconstructed. We find that calcium ions affect the folding kinetics of the individual CaM domains, whereas target peptides stabilize the already folded structure. Single-molecule data of full length CaM reveal that a wasp venom peptide binds noncooperatively to CaM with 2:1 stoichiometry, whereas a target enzyme peptide binds cooperatively with 1:1 stoichiometry. If mechanical load is applied directly to the target peptide, real-time binding/unbinding transitions can be observed.


Assuntos
Cálcio/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Peptídeos/metabolismo , Venenos de Vespas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Cinética , Ligantes , Microscopia de Força Atômica , Método de Monte Carlo , Quinase de Cadeia Leve de Miosina/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Peptídeos/química , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Termodinâmica , Venenos de Vespas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA