Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant J ; 104(2): 318-331, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32645235

RESUMO

Soybean cyst nematode (SCN; Heterodera glycines) is the largest pathogenic cause of soybean yield loss. The Rhg1 locus is the most used and best characterized SCN resistance locus, and contains three genes including one encoding an α-SNAP protein. Although the Rhg1 α-SNAP is known to play an important role in vesicle trafficking and SCN resistance, the protein's binding partners and the molecular mechanisms underpinning SCN resistance remain unclear. In this report, we show that the Rhg1 α-SNAP strongly interacts with two syntaxins of the t-SNARE family (Glyma.12G194800 and Glyma.16G154200) in yeast and plants; importantly, the genes encoding these syntaxins co-localize with SCN resistance quantitative trait loci. Fluorescent visualization revealed that the α-SNAP and the two interacting syntaxins localize to the plasma membrane and perinuclear space in both tobacco epidermal and soybean root cells. The two syntaxins and their two homeologs were mutated, individually and in combination, using the CRISPR-Cas9 system in the SCN-resistant Peking and SCN-susceptible Essex soybean lines. Peking roots with deletions introduced into syntaxin genes exhibited significantly reduced resistance to SCN, confirming that t-SNAREs are critical to resisting SCN infection. The results presented here uncover a key step in the molecular mechanism of SCN resistance, and will be invaluable to soybean breeders aiming to develop highly SCN-resistant soybean varieties.


Assuntos
Glycine max/parasitologia , Proteínas de Plantas/metabolismo , Proteínas SNARE/metabolismo , Tylenchoidea/patogenicidade , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Resistência à Doença , Interações Hospedeiro-Parasita , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/parasitologia , Plantas Geneticamente Modificadas , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Locos de Características Quantitativas , Proteínas SNARE/genética , Glycine max/genética , Técnicas do Sistema de Duplo-Híbrido
2.
Biochem J ; 467(3): 399-413, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25678081

RESUMO

Reversible protein phosphorylation, catalysed by protein kinases, is the most widely studied post-translational modification (PTM), whereas the analysis of other modifications such as S-thiolation is in its relative infancy. In a yeast-two-hybrid (Y2H) screen, we identified a number of novel putative brassinosteroid insensitive 1 (BR1)-associated receptor-like kinase 1 (BAK1) interacting proteins including several proteins related to redox regulation. Glutaredoxin (GRX) C2 (AtGRXC2) was among candidate proteins identified in the Y2H screen and its interaction with recombinant Flag-BAK1 cytoplasmic domain was confirmed using an in vitro pull-down approach. We show that BAK1 peptide kinase activity is sensitive to the oxidizing agents H2O2 and diamide in vitro, suggesting that cysteine oxidation might contribute to control of BAK1 activity. Furthermore, BAK1 was glutathionylated and this reaction could occur via a thiolate-dependent reaction with GSSG or a H2O2-dependent reaction with GSH and inhibited kinase activity. Surprisingly, both reactions were catalysed by AtGRXC2 at lower concentrations of GSSG or GSH than reacted non-enzymatically. Using MALDI-TOF MS, we identified Cys353, Cys374 and Cys408 as potential sites of glutathionylation on the BAK1 cytoplasmic domain and directed mutagenesis suggests that Cys353 and Cys408 are major sites of GRXC2-mediated glutathionylation. Collectively, these results highlight the potential for redox control of BAK1 and demonstrate the ability of AtGRXC2 to catalyse protein glutathionylation, a function not previously described for any plant GRX. The present work presents a foundation for future studies of glutathionylation of plant receptor-like protein kinases (RLKs) as well as for the analysis of activities of plant GRXs.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Arabidopsis/química , Cisteína/química , Genes de Plantas , Glutarredoxinas/química , Glutationa/metabolismo , Mutagênese Sítio-Dirigida , Oxirredução , Plantas Geneticamente Modificadas , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Técnicas do Sistema de Duplo-Híbrido
3.
Planta ; 214(3): 446-55, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11855649

RESUMO

Three genes encoding members of the EF-hand family of Ca2+-binding proteins were identified from Arabidopsis thaliana (L.) Heynh. sequences deposited in the expressed sequence tag and genomic sequence databases. Full-length cDNAs for each of the genes, Cam7, Cam8, and Cam9, were sequenced. Cam7 encodes a conventional 16.8-kDa, 148-amino-acid calmodulin protein (CaM). In contrast, Cam8 and 9 encode highly diverged isoforms of the protein that share 73 and 49% amino acid sequence identity, respectively, with CaM7. RNA gel blot and reverse transcription-polymerase chain reaction experiments revealed that each of the genes is expressed in leaves, flowers and siliques. To test the functional properties of the polypeptides encoded by these genes, they were expressed in Escherichia coli and the yeast Saccharomyces cerevisiae. Each was purified by Ca2+-dependent hydrophobic affinity chromatography. CaM7, but neither CaM8 nor CaM9, formed a complex with a basic amphiphilic helical peptide in the presence of Ca2+ that could be identified by gel electrophoresis. In spite of these in vitro differences, each of the sequences functionally substituted for yeast CMD1 to maintain viability. Isolation of yeast strains complemented by Cam9 required selection against the plasmid harboring wild-type yeast sequences, whereas complementation by Cam7 and Cam8 did not. These results suggest that the mechanism of action of CaM8 and CaM9 is similar to that of more conventional CaM sequences. CaM9, and to a lesser degree CaM8, however, appear to represent Ca2+-binding sensor proteins that interact with a more limited set of target proteins than do more conventional CaM isoforms.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Calmodulina/genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Calmodulina/metabolismo , DNA Complementar/química , DNA Complementar/genética , Escherichia coli/genética , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Dados de Sequência Molecular , Família Multigênica , Mutação , Isoformas de Proteínas/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA