Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 21(8): 755-767, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37255362

RESUMO

The treatment of the most aggressive primary brain tumor in adults, glioblastoma (GBM), is challenging due to its heterogeneous nature, invasive potential, and poor response to chemo- and radiotherapy. As a result, GBM inevitably recurs and only a few patients survive 5 years post-diagnosis. GBM is characterized by extensive phenotypic and genetic heterogeneity, creating a diversified genetic landscape and a network of biological interactions between subclones, ultimately promoting tumor growth and therapeutic resistance. This includes spatial and temporal changes in the tumor microenvironment, which influence cellular and molecular programs in GBM and therapeutic responses. However, dissecting phenotypic and genetic heterogeneity at spatial and temporal levels is extremely challenging, and the dynamics of the GBM microenvironment cannot be captured by analysis of a single tumor sample. In this review, we discuss the current research on GBM heterogeneity, in particular, the utility and potential applications of fluorescence-guided multiple sampling to dissect phenotypic and genetic intra-tumor heterogeneity in the GBM microenvironment, identify tumor and non-tumor cell interactions and novel therapeutic targets in areas that are key for tumor growth and recurrence, and improve the molecular classification of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/patologia , Fluorescência , Neoplasias Encefálicas/patologia , Microambiente Tumoral/genética
2.
Mol Cancer Res ; 21(8): 755-767, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37159022

RESUMO

The treatment of the most aggressive primary brain tumor in adults, glioblastoma (GBM), is challenging due to its heterogeneous nature, invasive potential, and poor response to chemo- and radiotherapy. As a result, GBM inevitably recurs and only a few patients survive 5 years post-diagnosis. GBM is characterized by extensive phenotypic and genetic heterogeneity, creating a diversified genetic landscape and a network of biological interactions between subclones, ultimately promoting tumor growth and therapeutic resistance. This includes spatial and temporal changes in the tumor microenvironment, which influence cellular and molecular programs in GBM and therapeutic responses. However, dissecting phenotypic and genetic heterogeneity at spatial and temporal levels is extremely challenging, and the dynamics of the GBM microenvironment cannot be captured by analysis of a single tumor sample. In this review, we discuss the current research on GBM heterogeneity, in particular, the utility and potential applications of fluorescence-guided multiple sampling to dissect phenotypic and genetic intra-tumor heterogeneity in the GBM microenvironment, identify tumor and non-tumor cell interactions and novel therapeutic targets in areas that are key for tumor growth and the recurrence, and improve the molecular classification of GBM.

3.
Front Oncol ; 13: 1039159, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937453

RESUMO

Clival chordomas are locally invasive midline skull base tumors arising from remnants of the primitive notochord. Intracranial vasculature and cranial nerve involvement of tumors in the paraclival region necessitates image guidance that provides accurate real-time feedback during resection. Several intraoperative image guidance modalities have been introduced as adjuncts to endoscopic endonasal surgery, including stereotactic neuronavigation, intraoperative ultrasound, intraoperative MRI, and intraoperative CT. Gross total resection of chordomas is associated with a lower recurrence rate; therefore, intraoperative imaging may improve long-term outcomes by enhancing the extent of resection. However, among these options, effectiveness and accessibility vary between institutions. We previously published the first use of an end-firing probe in the resection of a clival chordoma. End-firing probes provide a single field of view, primarily limited to depth estimation. In this case report, we discuss the benefits of employing a novel minimally invasive side-firing ultrasound probe as a cost-effective and time-efficient option to navigate the anatomy of the paraclival region and guide endoscopic endonasal resection of a large complex clival chordoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA