Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 13(10)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37887406

RESUMO

Cucurbitacins are tetracyclic triterpenoid secondary metabolites, widely distributed in the Cucurbitaceae family. These bitter-tasting compounds act primarily as defense mechanisms against external injuries, and thus against herbivores, and furthermore, they have also found use in folk medicine in the treatment of various diseases. Many studies have acknowledged significant biological activities of cucurbitacins, such as antioxidant and anti-inflammatory activities, antimicrobial properties, or antitumor potential. Overall, cucurbitacins have the ability to inhibit cell proliferation and induce apoptosis in various cancer cell lines. Both in vitro and in vivo studies were performed to evaluate the anticancer activity of varied cucurbitacins. Cucurbitacins offer a promising avenue for future cancer treatment strategies, and their diverse mechanisms of action make them attractive candidates for further investigation. The aim of the present study is to shed light on the chemical diversity of this group of compounds by providing the sources of origin of selected compounds and their chemical structure, as well as insight into their anticancer potential. In addition, within this paper molecular targets for cucurbitacins and signalling pathways important for cancer cell proliferation and/or survival that are affected by the described class of compounds have been presented.

2.
Polymers (Basel) ; 14(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36559918

RESUMO

The growing perspective of running out of crude oil followed by increasing prices for all crude oil-based materials, e.g., crude oil-based polymers, which have a huge number of practical applications but are usually neither biodegradable nor environmentally friendly, has resulted in searching for their substitutes-namely, bio-based polymers. Currently, both these types of polymers are used in practice worldwide. Owing to the advantages and disadvantages occurring among plastics with different origin, in this current review data on selected popular crude oil-based and bio-based polymers has been collected in order to compare their practical applications resulting from their composition, chemical structure, and related physical and chemical properties. The main goal is to compare polymers in pairs, which have the same or similar practical applications, regardless of different origin and composition. It has been proven that many crude oil-based polymers can be effectively replaced by bio-based polymers without significant loss of properties that ensure practical applications. Additionally, biopolymers have higher potential than crude oil-based polymers in many modern applications. It is concluded that the future of polymers will belong to bio-based rather than crude oil-based polymers.

3.
World J Microbiol Biotechnol ; 38(1): 11, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34873650

RESUMO

Due to the increase in the consumption of highly processed food in developed countries, as well as, a growing number of foodborne diseases, exploration of new food additives is an issue focusing on scientific attention and industrial interest. Functional compounds with lipophilic properties are remarkably desirable due to the high susceptibility to the deterioration of lipid-rich food products. This paper in a comprehensive manner provides the current knowledge about the enzymatic synthesis of lipophilic components that could act as multifunctional food additives. The main goal of enzymatic lipophilization of compounds intentionally added to food is to make these substances soluble in lipids and/or to obtain environmentally friendly surfactants. Moreover, lipase-catalyzed syntheses could result in changes in the antioxidant and antimicrobial activities of phenolic compounds, carbohydrates, amino acids (oligopeptides), and carboxylic acids. The review describes also the implementation of a new trend in green chemistry, where apart from simple and uncomplicated chemical compounds, the modifications of multi-compound mixtures, such as phenolic extracts or essential oils have been carried out.


Assuntos
Anti-Infecciosos/síntese química , Antioxidantes/síntese química , Aditivos Alimentares/síntese química , Lipase/química , Lipase/metabolismo , Animais , Ativação Enzimática , Ésteres/química , Humanos , Lipídeos/química
4.
Foods ; 10(2)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671224

RESUMO

The aim of the study was to evaluate the possibility to utilize a fish waste oil issued from the industrial smoking process in nitrogen-limited Yarrowia lipolytica yeast batch cultures. The waste carbon source was utilized by the yeast and stimulated the single cell oil production via an ex novo pathway. The yeast biomass contained lipids up to 0.227 g/g d.m.. Independently from culture conditions, high contents of very long chain fatty acids were quantified in yeast biomass including docosahexaenoic (DHA), eicosapentaenoic acid (EPA), eicosenic and erucic acids. The pH regulation did not influence the cellular lipids yield (0.234 g/g d.m.). Meanwhile, the intensification of the oxygenation of medium by changing the mixing speed (maximum concentration of lipids produced 4.64 g/dm3) and decreasing the amount of inoculum had a positive effect on the culture parameters in waste fish oil medium. Further work on upgradation of the original waste is advisable, especially because the oil indicated high content of polyphenols and lower susceptibility to oxidation than microbial oil derived from control olive oil medium.

5.
Biotechnol Lett ; 43(3): 601-612, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33104936

RESUMO

OBJECTIVE: The aim of the study was to evaluate the possibility of using Y. lipolytica biomass as a whole-cell catalyst in the synthesis of lipophilic antioxidants, with the example of esterification of five phenolic acids with 1-butanol. RESULTS: Freeze-dried Y. lipolytica biomass was successfully applied as a biocatalyst in the synthesis of esters of phenylpropanoic acid derivatives with 75-98% conversion. However, in the case of phenylacetic acid derivatives, results below 10% were obtained. The biological activity of phenolic acid esters was strongly associated with their chemical structures. Butyl 3-(4-hydroxyphenyl)propanoate showed an IC50 value of 19 mg/ml (95 mM) and TEAC value of 0.427. Among the compounds tested, butyl esters of 3-(4-hydroxyphenyl)propanoic and 4-hydroxyphenylacetic acids exhibited the highest antifungal activity. CONCLUSIONS: Lipophilization of phenolic acids achieved by enzymatic esterification creates prospects for using these compounds as food additives with antioxidant properties in lipid-rich food matrices.


Assuntos
Antioxidantes , Biomassa , Hidroxibenzoatos , Yarrowia , 1-Butanol/química , 1-Butanol/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Esterificação , Liofilização , Interações Hidrofóbicas e Hidrofílicas , Hidroxibenzoatos/química , Hidroxibenzoatos/metabolismo , Yarrowia/metabolismo , Yarrowia/fisiologia
6.
Curr Pharm Biotechnol ; 19(14): 1098-1113, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30556498

RESUMO

Phenolic acids are secondary plant metabolites belonging to polyphenol classes, widely spread throughout the plant kingdom. The name "phenolic acids", in general, describes phenols that possess one carboxylic acid functionality and they could be divided into three major subclasses: hydroxybenzoic, hydroxycinnamic and hydroxyphenylacetic acids. The great interest in phenolic acids is associated with their high potential for food preservation (antioxidant and antimicrobial activity) and, last but not least, high therapeutic potential. The aim of this review is to summarise the current knowledge concerning phenolic acids and the topics discussed include natural sources of phenolic acids, biosynthesis and metabolism, health benefits of phenolic acids (first of all the antioxidant activity of dietary phenolics and also anticarcinogenic and anti-inflammatory effect), their antimicrobial activity for selected groups of bacteria and fungi (yeasts) and structural modifications of the molecule especially those increasing lipophilicity and improving solubility in lipids. Recent advances in the methods of enzymatic synthesis of phenolic acid derivatives are described and some conclusions referring to Structure-Property-Activity Relationships of phenolic acids, particularly important from the point of view of their pharmaceutical and nutritional applications, are discussed.


Assuntos
Antioxidantes/isolamento & purificação , Biotecnologia/métodos , Ácidos Cumáricos/isolamento & purificação , Conservantes de Alimentos/isolamento & purificação , Hidroxibenzoatos/isolamento & purificação , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Ácidos Cumáricos/farmacocinética , Ácidos Cumáricos/farmacologia , Conservantes de Alimentos/farmacocinética , Conservantes de Alimentos/farmacologia , Humanos , Hidroxibenzoatos/farmacocinética , Hidroxibenzoatos/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA