Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Nat Metab ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689023

RESUMO

The oxidative phosphorylation system1 in mammalian mitochondria plays a key role in transducing energy from ingested nutrients2. Mitochondrial metabolism is dynamic and can be reprogrammed to support both catabolic and anabolic reactions, depending on physiological demands or disease states. Rewiring of mitochondrial metabolism is intricately linked to metabolic diseases and promotes tumour growth3-5. Here, we demonstrate that oral treatment with an inhibitor of mitochondrial transcription (IMT)6 shifts whole-animal metabolism towards fatty acid oxidation, which, in turn, leads to rapid normalization of body weight, reversal of hepatosteatosis and restoration of normal glucose tolerance in male mice on a high-fat diet. Paradoxically, the IMT treatment causes a severe reduction of oxidative phosphorylation capacity concomitant with marked upregulation of fatty acid oxidation in the liver, as determined by proteomics and metabolomics analyses. The IMT treatment leads to a marked reduction of complex I, the main dehydrogenase feeding electrons into the ubiquinone (Q) pool, whereas the levels of electron transfer flavoprotein dehydrogenase and other dehydrogenases connected to the Q pool are increased. This rewiring of metabolism caused by reduced mtDNA expression in the liver provides a principle for drug treatment of obesity and obesity-related pathology.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38682559

RESUMO

BACKGROUND: The maintenance of skeletal muscle plasticity upon changes in the environment, nutrient supply, and exercise depends on regulatory mechanisms that couple structural and metabolic adaptations. The mechanisms that interconnect both processes at the transcriptional level remain underexplored. Nr2f6, a nuclear receptor, regulates metabolism and cell differentiation in peripheral tissues. However, its role in the skeletal muscle is still elusive. Here, we aimed to investigate the effects of Nr2f6 modulation on muscle biology in vivo and in vitro. METHODS: Global RNA-seq was performed in Nr2f6 knockdown C2C12 myocytes (N = 4-5). Molecular and metabolic assays and proliferation experiments were performed using stable Nr2f6 knockdown and Nr2f6 overexpression C2C12 cell lines (N = 3-6). Nr2f6 content was evaluated in lipid overload models in vitro and in vivo (N = 3-6). In vivo experiments included Nr2f6 overexpression in mouse tibialis anterior muscle, followed by gene array transcriptomics and molecular assays (N = 4), ex vivo contractility experiments (N = 5), and histological analysis (N = 7). The conservation of Nr2f6 depletion effects was confirmed in primary skeletal muscle cells of humans and mice. RESULTS: Nr2f6 knockdown upregulated genes associated with muscle differentiation, metabolism, and contraction, while cell cycle-related genes were downregulated. In human skeletal muscle cells, Nr2f6 knockdown significantly increased the expression of myosin heavy chain genes (two-fold to three-fold) and siRNA-mediated depletion of Nr2f6 increased maximal C2C12 myocyte's lipid oxidative capacity by 75% and protected against lipid-induced cell death. Nr2f6 content decreased by 40% in lipid-overloaded myotubes and by 50% in the skeletal muscle of mice fed a high-fat diet. Nr2f6 overexpression in mice resulted in an atrophic and hypoplastic state, characterized by a significant reduction in muscle mass (15%) and myofibre content (18%), followed by an impairment (50%) in force production. These functional phenotypes were accompanied by the establishment of an inflammation-like molecular signature and a decrease in the expression of genes involved in muscle contractility and oxidative metabolism, which was associated with the repression of the uncoupling protein 3 (20%) and PGC-1α (30%) promoters activity following Nr2f6 overexpression in vitro. Additionally, Nr2f6 regulated core components of the cell division machinery, effectively decoupling muscle cell proliferation from differentiation. CONCLUSIONS: Our findings reveal a novel role for Nr2f6 as a molecular transducer that plays a crucial role in maintaining the balance between skeletal muscle contractile function and oxidative capacity. These results have significant implications for the development of potential therapeutic strategies for metabolic diseases and myopathies.

3.
Cell Metab ; 36(2): 278-300, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38183980

RESUMO

The risk associated with multiple cancers, cardiovascular disease, diabetes, and all-cause mortality is decreased in individuals who meet the current recommendations for physical activity. Therefore, regular exercise remains a cornerstone in the prevention and treatment of non-communicable diseases. An acute bout of exercise results in the coordinated interaction between multiple tissues to meet the increased energy demand of exercise. Over time, the associated metabolic stress of each individual exercise bout provides the basis for long-term adaptations across tissues, including the cardiovascular system, skeletal muscle, adipose tissue, liver, pancreas, gut, and brain. Therefore, regular exercise is associated with a plethora of benefits throughout the whole body, including improved cardiorespiratory fitness, physical function, and glycemic control. Overall, we summarize the exercise-induced adaptations that occur within multiple tissues and how they converge to ultimately improve cardiometabolic health.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Humanos , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/metabolismo , Tecido Adiposo
4.
Metabolism ; 135: 155268, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35908579

RESUMO

AIMS/HYPOTHESIS: Metabolic effects of exercise may partly depend on the time-of-day when exercise is performed. We tested the hypothesis that exercise timing affects the adaptations in multi-tissue metabolome and skeletal muscle proteome profiles in men with type 2 diabetes. METHODS: Men fitting the inclusion (type 2 diabetes, age 45-68 years and body mass index 23-33 kg/m2) and exclusion criteria (insulin treatment, smoking, concurrent systemic disease, and regular exercise training) were included in a randomized crossover trial (n = 15). Participants included in this metabolomics and proteomics analysis fully completed all exercise sessions (n = 8). The trial consisted of two weeks of high-intensity interval training (HIT) (three sessions/week) either in the morning (08:00, n = 5) or afternoon (16:45, n = 3), a two-week wash-out period, and an additional two weeks of HIT at the opposing time. Participants and researchers were not blinded to group allocation. Blood, skeletal muscle and subcutaneous adipose tissue were obtained before the first, and after each training period. Broad-spectrum, untargeted proteomic analysis was performed on skeletal muscle, and metabolomic analysis was performed on all biosamples. Differential content was assessed by linear regression and pathway set enrichment analyses were performed. Coordinated metabolic changes across tissues were identified by Spearman correlation analysis. RESULTS: Metabolic and proteomic profiles remained stable after two weeks of HIT, and individual metabolites and proteins were not altered, irrespective of the time of day at which the training was performed. However, coordinated changes in relevant metabolic pathways and protein categories were identified. Morning and afternoon HIT similarly increased plasma diacylglycerols, skeletal muscle acyl-carnitines, and subcutaneous adipose tissue sphingomyelins and lysophospholipids. Acyl-carnitines were central to training-induced metabolic cross-talk across tissues. Plasma carbohydrates, via the penthose phosphate pathway, were increased and skeletal muscle lipids were decreased after morning compared to afternoon HIT. Skeletal muscle lipoproteins were higher, and mitochondrial complex III abundance was lower after morning compared to afternoon HIT. CONCLUSIONS/INTERPRETATION: We provide a comprehensive analysis of a multi-tissue metabolomic and skeletal muscle proteomic responses to training at different times of the day in men with type 2 diabetes. Increased circulating lipids and changes in adipose tissue lipid composition were common between morning and afternoon HIT. However, afternoon HIT increased skeletal muscle lipids and mitochondrial content to a greater degree than morning training. Thus, there is a diurnal component in the metabolomic and proteomic response to exercise in men with type 2 diabetes. The clinical relevance of this response warrants further investigation.


Assuntos
Diabetes Mellitus Tipo 2 , Proteoma , Idoso , Estudos Cross-Over , Diabetes Mellitus Tipo 2/metabolismo , Exercício Físico/fisiologia , Humanos , Lipídeos , Masculino , Metaboloma , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Proteoma/metabolismo , Proteômica
5.
Nat Metab ; 4(2): 190-202, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35165448

RESUMO

The mechanisms promoting disturbed white adipocyte function in obesity remain largely unclear. Herein, we integrate white adipose tissue (WAT) metabolomic and transcriptomic data from clinical cohorts and find that the WAT phosphocreatine/creatine ratio is increased and creatine kinase-B expression and activity is decreased in the obese state. In human in vitro and murine in vivo models, we demonstrate that decreased phosphocreatine metabolism in white adipocytes alters adenosine monophosphate-activated protein kinase activity via effects on adenosine triphosphate/adenosine diphosphate levels, independently of WAT beigeing. This disturbance promotes a pro-inflammatory profile characterized, in part, by increased chemokine (C-C motif) ligand 2 (CCL2) production. These data suggest that the phosphocreatine/creatine system links cellular energy shuttling with pro-inflammatory responses in human and murine white adipocytes. Our findings provide unexpected perspectives on the mechanisms driving WAT inflammation in obesity and may present avenues to target adipocyte dysfunction.


Assuntos
Adipócitos Brancos , Creatina , Adipócitos Brancos/metabolismo , Animais , Humanos , Inflamação/metabolismo , Camundongos , Obesidade/metabolismo , Fosfocreatina
6.
Nat Commun ; 12(1): 5948, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642330

RESUMO

Skeletal muscle is a highly adaptable tissue and remodels in response to exercise training. Using short RNA sequencing, we determine the miRNA profile of skeletal muscle from healthy male volunteers before and after a 14-day aerobic exercise training regime. Among the exercise training-responsive miRNAs identified, miR-19b-3p was selected for further validation. Overexpression of miR-19b-3p in human skeletal muscle cells increases insulin signaling, glucose uptake, and maximal oxygen consumption, recapitulating the adaptive response to aerobic exercise training. Overexpression of miR-19b-3p in mouse flexor digitorum brevis muscle enhances contraction-induced glucose uptake, indicating that miR-19b-3p exerts control on exercise training-induced adaptations in skeletal muscle. Potential targets of miR-19b-3p that are reduced after aerobic exercise training include KIF13A, MAPK6, RNF11, and VPS37A. Amongst these, RNF11 silencing potentiates glucose uptake in human skeletal muscle cells. Collectively, we identify miR-19b-3p as an aerobic exercise training-induced miRNA that regulates skeletal muscle glucose metabolism.


Assuntos
Proteínas de Ligação a DNA/genética , Exercício Físico/fisiologia , Glucose/metabolismo , MicroRNAs/genética , Processamento de Proteína Pós-Traducional , Adulto , Animais , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Metabolismo Energético/genética , Voluntários Saudáveis , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Proteína Quinase 6 Ativada por Mitógeno/genética , Proteína Quinase 6 Ativada por Mitógeno/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Consumo de Oxigênio/genética , Fosforilação , Condicionamento Físico Animal , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
7.
Am J Physiol Cell Physiol ; 321(5): C770-C778, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34495765

RESUMO

Skeletal muscle is an endocrine organ secreting exercise-induced factors (exerkines), which play a pivotal role in interorgan cross talk. Using mass spectrometry (MS)-based proteomics, we characterized the secretome and identified thymosin ß4 (TMSB4X) as the most upregulated secreted protein in the media of contracting C2C12 myotubes. TMSB4X was also acutely increased in the plasma of exercising humans irrespective of the insulin resistance condition or exercise mode. Treatment of mice with TMSB4X did not ameliorate the metabolic disruptions associated with diet induced-obesity, nor did it enhance muscle regeneration in vivo. However, TMSB4X increased osteoblast proliferation and neurite outgrowth, consistent with its WADA classification as a prohibited growth factor. Therefore, we report TMSB4X as a human exerkine with a potential role in cellular cross talk.


Assuntos
Proliferação de Células/efeitos dos fármacos , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Timosina/metabolismo , Timosina/farmacologia , Animais , Estudos de Casos e Controles , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Humanos , Resistência à Insulina , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Doenças Musculares/fisiopatologia , Osteoblastos/patologia , Resistência Física , Proteômica , Transdução de Sinais , Espectrometria de Massas em Tandem
8.
J Cachexia Sarcopenia Muscle ; 12(5): 1232-1248, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34342159

RESUMO

BACKGROUND: Type 2 diabetes and obesity are often seen concurrently with skeletal muscle wasting, leading to further derangements in function and metabolism. Muscle wasting remains an unmet need for metabolic disease, and new approaches are warranted. The neuropeptide urocortin 2 (UCN2) and its receptor corticotropin releasing factor receptor 2 (CRHR2) are highly expressed in skeletal muscle and play a role in regulating energy balance, glucose metabolism, and muscle mass. The aim of this study was to investigate the effects of modified UCN2 peptides as a pharmaceutical therapy to counteract the loss of skeletal muscle mass associated with obesity and casting immobilization. METHODS: High-fat-fed mice (C57Bl/6J; 26 weeks old) and ob/ob mice (11 weeks old) were injected daily with a PEGylated (Compound A) and non-PEGylated (Compound B) modified human UCN2 at 0.3 mg/kg subcutaneously for 14 days. A separate group of chow-fed C57Bl/6J mice (12 weeks old) was subjected to hindlimb cast immobilization and, after 1 week, received daily injections with Compound A. In vivo functional tests were performed to measure protein synthesis rates and skeletal muscle function. Ex vivo functional and molecular tests were performed to measure contractile force and signal transduction of catabolic and anabolic pathways in skeletal muscle. RESULTS: Skeletal muscles (extensor digitorum longus, soleus, and tibialis anterior) from high-fat-fed mice treated with Compound A were ~14% heavier than muscles from vehicle-treated mice. Chronic treatment with modified UCN2 peptides altered the expression of structural genes and transcription factors in skeletal muscle in high-fat diet-induced obesity including down-regulation of Trim63 and up-regulation of Nr4a2 and Igf1 (P < 0.05 vs. vehicle). Signal transduction via both catabolic and anabolic pathways was increased in tibialis anterior muscle, with increased phosphorylation of ribosomal protein S6 at Ser235/236 , FOXO1 at Ser256 , and ULK1 at Ser317 , suggesting that UCN2 treatment modulates protein synthesis and degradation pathways (P < 0.05 vs. vehicle). Acutely, a single injection of Compound A in drug-naïve mice had no effect on the rate of protein synthesis in skeletal muscle, as measured via the surface sensing of translation method, while the expression of Nr4a3 and Ppargc1a4 was increased (P < 0.05 vs. vehicle). Compound A treatment prevented the loss of force production from disuse due to casting. Compound B treatment increased time to fatigue during ex vivo contractions of fast-twitch extensor digitorum longus muscle. Compound A and B treatment increased lean mass and rates of skeletal muscle protein synthesis in ob/ob mice. CONCLUSIONS: Modified human UCN2 is a pharmacological candidate for the prevention of the loss of skeletal muscle mass associated with obesity and immobilization.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético , Obesidade/tratamento farmacológico , Obesidade/etiologia , Peptídeos , Urocortinas
9.
Diabetologia ; 64(9): 2077-2091, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34131782

RESUMO

AIMS/HYPOTHESIS: Increased levels of branched-chain amino acids (BCAAs) are associated with type 2 diabetes pathogenesis. However, most metabolomic studies are limited to an analysis of plasma metabolites under fasting conditions, rather than the dynamic shift in response to a metabolic challenge. Moreover, metabolomic profiles of peripheral tissues involved in glucose homeostasis are scarce and the transcriptomic regulation of genes involved in BCAA catabolism is partially unknown. This study aimed to identify differences in circulating and skeletal muscle BCAA levels in response to an OGTT in individuals with normal glucose tolerance (NGT) or type 2 diabetes. Additionally, transcription factors involved in the regulation of the BCAA gene set were identified. METHODS: Plasma and vastus lateralis muscle biopsies were obtained from individuals with NGT or type 2 diabetes before and after an OGTT. Plasma and quadriceps muscles were harvested from skeletal muscle-specific Ppargc1a knockout and transgenic mice. BCAA-related metabolites and genes were assessed by LC-MS/MS and quantitative RT-PCR, respectively. Small interfering RNA and adenovirus-mediated overexpression techniques were used in primary human skeletal muscle cells to study the role of PPARGC1A and ESRRA in the expression of the BCAA gene set. Radiolabelled leucine was used to analyse the impact of oestrogen-related receptor α (ERRα) knockdown on leucine oxidation. RESULTS: Impairments in BCAA catabolism in people with type 2 diabetes under fasting conditions were exacerbated after a glucose load. Branched-chain keto acids were reduced 37-56% after an OGTT in the NGT group, whereas no changes were detected in individuals with type 2 diabetes. These changes were concomitant with a stronger correlation with glucose homeostasis biomarkers and downregulated expression of branched-chain amino acid transaminase 2, branched-chain keto acid dehydrogenase complex subunits and 69% of downstream BCAA-related genes in skeletal muscle. In primary human myotubes overexpressing peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α, encoded by PPARGC1A), 61% of the analysed BCAA genes were upregulated, while 67% were downregulated in the quadriceps of skeletal muscle-specific Ppargc1a knockout mice. ESRRA (encoding ERRα) silencing completely abrogated the PGC-1α-induced upregulation of BCAA-related genes in primary human myotubes. CONCLUSIONS/INTERPRETATION: Metabolic inflexibility in type 2 diabetes impacts BCAA homeostasis and attenuates the decrease in circulating and skeletal muscle BCAA-related metabolites after a glucose challenge. Transcriptional regulation of BCAA genes in primary human myotubes via PGC-1α is ERRα-dependent.


Assuntos
Diabetes Mellitus Tipo 2 , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Cromatografia Líquida , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Humanos , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores de Estrogênio , Espectrometria de Massas em Tandem , Receptor ERRalfa Relacionado ao Estrogênio
10.
Metabolism ; 118: 154726, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33581131

RESUMO

BACKGROUND & AIMS: The physiological regulation and contribution of the multiple phosphorylation sites of insulin receptor substrate 1 (IRS1) to the pathogenesis of insulin resistance is unknown. Our aims were to map the phosphorylated motifs of IRS1 in skeletal muscle from people with normal glucose tolerance (NGT; n = 11) or type 2 diabetes mellitus (T2DM; n = 11). METHODS: Skeletal muscle biopsies were obtained under fasted conditions or during a euglycemic clamp and IRS1 phosphorylation sites were identified by mass spectrometry. RESULTS: We identified 33 phosphorylation sites in biopsies from fasted individuals, including 2 previously unreported sites ([Ser393] and [Thr1017]). In men with NGT and T2DM, insulin increased phosphorylation of 5 peptides covering 10 serine or threonine sites and decreased phosphorylation of 6 peptides covering 9 serine, threonine or tyrosine sites. Insulin-stimulation increased phosphorylation of 2 peptides, and decreased phosphorylation of 2 peptides only in men with NGT. Insulin increased phosphorylation of 2 peptides only in men with T2DM. CONCLUSIONS: Despite severe skeletal muscle insulin resistance, the pattern of IRS1 phosphorylation was not uniformly altered in T2DM. Our results contribute to the evolving understanding of the physiological regulation of insulin signaling and complement the comprehensive map of IRS1 phosphorylation in T2DM.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Teste de Tolerância a Glucose , Proteínas Substratos do Receptor de Insulina/metabolismo , Músculo Esquelético/metabolismo , Fosfoproteínas/metabolismo , Proteômica/métodos , Sequência de Aminoácidos , Biópsia , Estudos de Casos e Controles , Humanos , Insulina/metabolismo , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Fosforilação , Transdução de Sinais
11.
Am J Physiol Endocrinol Metab ; 318(1): E1-E10, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31613643

RESUMO

The molecular circadian clock plays a role in metabolic homeostasis. We tested the hypothesis obesity and systemic factors associated with insulin resistance affect skeletal muscle clock gene expression. We determined clock gene expression in skeletal muscle of obese women (n = 5) and men (n = 18) before and 6 mo after Roux-en-Y gastric bypass (RYGB) surgery and normal-weight controls (women n = 6, men n = 8). Skeletal muscle clock gene expression was affected by obesity and weight loss. CRY1 mRNA (P = 0.05) was increased and DBP mRNA (P < 0.05) was decreased in obese vs. normal weight women and restored to control levels after RYGB-induced weight loss. CLOCK, CRY1, CRY2, and DBP mRNA (P < 0.05) was decreased in obese men compared with normal weight men. Expression of all other clock genes was unaltered by obesity or weight loss in both cohorts. We correlated clock gene expression with clinical characteristics of the participants. Among the genes studied, DBP and PER3 expression was inversely correlated with plasma lipids in both cohorts. Circadian time-course studies revealed that core clock genes oscillate over time (P < 0.05), with BMAL1, CIART, CRY2, DBP, PER1, and PER3 expression profiles altered by palmitate treatment. In conclusion, skeletal muscle clock gene expression and function is altered by obesity, coincident with changes in plasma lipid levels. Palmitate exposure disrupts clock gene expression in myotubes, indicating that dyslipidemia directly alters the circadian program. Strategies to reduce lipid overload and prevent elevations in nonesterified fatty acid and cholesterol levels may sustain circadian clock signals in skeletal muscle.


Assuntos
Músculo Esquelético/metabolismo , Obesidade/genética , RNA Mensageiro/metabolismo , Redução de Peso , Fatores de Transcrição ARNTL/genética , Adulto , Proteínas CLOCK/genética , Estudos de Casos e Controles , Criptocromos/genética , Proteínas de Ligação a DNA/genética , Inibidores Enzimáticos/farmacologia , Ácidos Graxos não Esterificados/metabolismo , Feminino , Derivação Gástrica , Expressão Gênica , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Obesidade/metabolismo , Obesidade/cirurgia , Ácido Palmítico/farmacologia , Proteínas Circadianas Period/genética , Cultura Primária de Células , Fatores de Transcrição/genética
12.
FASEB J ; 33(9): 10551-10562, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31225998

RESUMO

During exercise, skeletal muscles release cytokines, peptides, and metabolites that exert autocrine, paracrine, or endocrine effects on glucose homeostasis. In this study, we investigated the effects of secreted protein acidic and rich in cysteine (SPARC), an exercise-responsive myokine, on glucose metabolism in human and mouse skeletal muscle. SPARC-knockout mice showed impaired systemic metabolism and reduced phosphorylation of AMPK and protein kinase B in skeletal muscle. Treatment of SPARC-knockout mice with recombinant SPARC improved glucose tolerance and concomitantly activated AMPK in skeletal muscle. These effects were dependent on AMPK-γ3 because SPARC treatment enhanced skeletal muscle glucose uptake in wild-type mice but not in AMPK-γ3-knockout mice. SPARC strongly interacted with the voltage-dependent calcium channel, and inhibition of calcium-dependent signaling prevented SPARC-induced AMPK phosphorylation in human and mouse myotubes. Finally, chronic SPARC treatment improved systemic glucose tolerance and AMPK signaling in skeletal muscle of high-fat diet-induced obese mice, highlighting the efficacy of SPARC treatment in the management of metabolic diseases. Thus, our findings suggest that SPARC treatment mimics the effects of exercise on glucose tolerance by enhancing AMPK-dependent glucose uptake in skeletal muscle.-Aoi, W., Hirano, N., Lassiter, D. G., Björnholm, M., Chibalin, A. V., Sakuma, K., Tanimura, Y., Mizushima, K., Takagi, T., Naito, Y., Zierath, J. R., Krook, A. Secreted protein acidic and rich in cysteine (SPARC) improves glucose tolerance via AMP-activated protein kinase activation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Intolerância à Glucose/prevenção & controle , Glucose/metabolismo , Músculo Esquelético/patologia , Obesidade/prevenção & controle , Osteonectina/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Fosforilação , Transdução de Sinais
13.
FASEB J ; 33(5): 6269-6280, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30768368

RESUMO

Paternal preconceptional high-fat diet (HFD) alters whole-body glucose and energy homeostasis over several generations, which may be mediated by altered transcriptomic profiles of metabolic organs. We investigated the effect of paternal HFD on the hepatic transcriptomic and metabolic signatures of female grand-offspring. Paternal HFD strongly impacted the liver transcriptome of the second-generation offspring. Gene set enrichment analysis (GSEA) revealed grandpaternal-HFD altered the TNF-α signaling via NFκB pathway, independent of the grand-offspring's diet. Reduction in the hepatic cytokine levels, including the TNF-α, as well as NFκB content and activity, suggest that the basal inflammatory response in F2 rats is disturbed. GSEA also show altered expression of various genes annotated to the fatty acid metabolism. Grandpaternal-HFD reduced G0/G1 switch gene 2 (G0S2) expression, concomitant with reduced hepatic triglyceride content in F2 rats. In conclusion, the hepatic transcriptome is altered in grand-offspring from HFD-fed grandfathers. Altered TNF-α/NFκB signaling and levels of inflammatory cytokines indicate grandpaternal HFD impacts hepatic immunometabolism. Overall, our findings indicate that paternal exposure to environmental factors transgenerationally reprograms metabolism in a tissue-specific manner, affecting the development and health of future generations.-De Castro Barbosa, T., Alm, P. S., Krook, A., Barrès, R., Zierath, J. R. Paternal high-fat diet transgenerationally impacts hepatic immunometabolism.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Herança Paterna , Transcriptoma , Animais , Epigênese Genética , Feminino , Masculino , NF-kappa B/genética , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
14.
Mol Metab ; 20: 79-88, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30502001

RESUMO

OBJECTIVE: Forkhead box class O (FOXO) transcription factors regulate whole body energy metabolism, skeletal muscle mass, and substrate switching. FOXO1 and FOXO3 are highly abundant transcription factors, but their precise role in skeletal muscle metabolism has not been fully elucidated. METHODS: To elucidate the role of FOXO in skeletal muscle, dominant negative (dn) constructs for FOXO1 (FOXO1dn) or FOXO3 (FOXO3dn) were transfected by electroporation into mouse tibialis anterior muscle and glucose uptake, signal transduction, and gene expression profiles were assessed after an oral glucose tolerance test. Results were compared against contralateral control transfected muscle. RESULTS: FOXO1dn and FOXO3dn attenuated glucose uptake (35%, p < 0.01 and 20%, p < 0.05), GLUT4 protein (40%, p < 0.05 and 10%, p < 0.05), and subunits of the oxidative phosphorylation cascade. Intramuscular glycogen content was decreased (20%, p < 0.05) by FOXO3dn, but not FOXO1dn. Transcriptomic analysis revealed major pathways affected by FOXO1dn or FOXO3dn revolve around metabolism and inflammation. FOXO1dn increased Akt protein (140%, p < 0.001), p-AktSer473 (720%, p < 0.05) and p-AktThr308 (570%, p < 0.01), whereas FOXO3dn was without effect. FOXO1dn and FOXO3dn increased mTOR protein content (170% and 190%, p < 0.05), and p-p70S6KThr389 (420%, p < 0.01 and 300%, p < 0.01), while p-mTORSer2448 (500%, p < 0.01), was only increased by FOXO1dn. Chemokines and immune cell markers were robustly upregulated in skeletal muscle following the FOXOdn transfections, but not after control transfection. CONCLUSIONS: FOXO1 and FOXO3 regulate glucose metabolism and markers of inflammation in skeletal muscle, implicating transcriptional control governing "immunometabolic" dynamics.


Assuntos
Quimiocinas/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/metabolismo , Glucose/metabolismo , Músculo Esquelético/metabolismo , Animais , Quimiocinas/genética , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O3/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
15.
Front Physiol ; 9: 1198, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210362

RESUMO

Circadian rhythms can be perturbed by shift work, travel across time zones, many occupational tasks, or genetic mutations. Perturbed circadian rhythms are associated with the increasing problem of obesity, metabolic dysfunction, and insulin resistance. We hypothesized that insulin sensitivity in skeletal muscle follows a circadian pattern and that this pattern is important for overall metabolic function. This hypothesis was verified using mice as a model system. We observed circadian rhythmicity in whole body insulin tolerance, as well as in signaling pathways regulating insulin- and exercise-induced glucose uptake in skeletal muscle, including AKT, 5'-adenosine monophosphate-activated protein kinase (AMPK) and TBC1 domain family member 4 (TBC1D4) phosphorylation. Basal and insulin-stimulated glucose uptake in skeletal muscle and adipose tissues in vivo also differed between day- and nighttime. However, the rhythmicity of glucose uptake differed from the rhythm of whole-body insulin tolerance. These results indicate that neither skeletal muscle nor adipose tissue play a major role for the circadian rhythmicity in whole-body insulin tolerance. To study the circadian pattern of insulin sensitivity directly in skeletal muscle, we determined glucose uptake under basal and submaximal insulin-stimulated conditions ex vivo every sixth hour. Both insulin sensitivity and signaling of isolated skeletal muscle peaked during the dark period. We next examined the effect of exercise training on the circadian rhythmicity of insulin sensitivity. As expected, voluntary exercise training enhanced glucose uptake in skeletal muscle. Nevertheless, exercise training did not affect the circadian rhythmicity of skeletal muscle insulin sensitivity. Taken together, our results provide evidence that skeletal muscle insulin sensitivity exhibits circadian rhythmicity.

16.
Physiol Rep ; 6(12): e13739, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29906337

RESUMO

Despite the well-known role of satellite cells in skeletal muscle plasticity, the effect of spinal cord injury on their function in humans remains unknown. We determined whether spinal cord injury affects the intrinsic ability of satellite cells to differentiate and produce metabolically healthy myotubes. We obtained vastus lateralis biopsies from eight spinal cord-injured and six able-bodied individuals. Satellite cells were isolated, grown and differentiated in vitro. Gene expression was measured by quantitative PCR. Abundance of differentiation markers and regulatory proteins was determined by Western blotting. Protein synthesis and fatty acid oxidation were measured by radioactive tracer-based assays. Activated satellite cells (myoblasts) and differentiated myotubes derived from skeletal muscle of able-bodied and spinal cord-injured individuals expressed similar (P > 0.05) mRNA levels of myogenic regulatory factors. Myogenic differentiation factor 1 expression was higher in myoblasts from spinal cord-injured individuals. Desmin and myogenin protein content was increased upon differentiation in both groups, while myotubes from spinal cord-injured individuals contained more type I and II myosin heavy chain. Phosphorylated and total protein levels of Akt-mechanistic target of rapamycin and forkhead box protein O signalling axes and protein synthesis rate in myotubes were similar (P > 0.05) between groups. Additionally, fatty acid oxidation of myotubes from spinal cord-injured individuals was unchanged (P > 0.05) compared to able-bodied controls. Our results indicate that the intrinsic differentiation capacity of satellite cells and metabolic characteristics of myotubes are preserved following spinal cord injury. This may inform potential interventions targeting satellite cell activation to alleviate skeletal muscle atrophy.


Assuntos
Células Satélites de Músculo Esquelético/patologia , Traumatismos da Medula Espinal/patologia , Adulto , Biópsia , Estudos de Casos e Controles , Diferenciação Celular , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/biossíntese , Células Satélites de Músculo Esquelético/metabolismo , Traumatismos da Medula Espinal/metabolismo
17.
Diabetologia ; 61(2): 424-432, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29022062

RESUMO

AIMS/HYPOTHESIS: Insulin-mediated signals and AMP-activated protein kinase (AMPK)-mediated signals are activated in response to physiological conditions that represent energy abundance and shortage, respectively. Focal adhesion kinase (FAK) is implicated in insulin signalling and cancer progression in various non-muscle cell types and plays a regulatory role during skeletal muscle differentiation. The role of FAK in skeletal muscle in relation to insulin stimulation or AMPK activation is unknown. We examined the effects of insulin or AMPK activation on FAK phosphorylation in human skeletal muscle and the direct role of FAK on glucose and lipid metabolism. We hypothesised that insulin treatment and AMPK activation would have opposing effects on FAK phosphorylation and that gene silencing of FAK would alter metabolism. METHODS: Human muscle was treated with insulin or the AMPK-activating compound 5-aminoimadazole-4-carboxamide ribonucleotide (AICAR) to determine FAK phosphorylation and glucose transport. Primary human skeletal muscle cells were used to study the effects of insulin or AICAR treatment on FAK signalling during serum starvation, as well as to determine the metabolic consequences of silencing the FAK gene, PTK2. RESULTS: AMPK activation reduced tyrosine phosphorylation of FAK in skeletal muscle. AICAR reduced p-FAKY397 in isolated human skeletal muscle and cultured myotubes. Insulin stimulation did not alter FAK phosphorylation. Serum starvation increased AMPK activation, as demonstrated by increased p-ACCS222, concomitant with reduced p-FAKY397. FAK signalling was reduced owing to serum starvation and AICAR treatment as demonstrated by reduced p-paxillinY118. Silencing PTK2 in primary human skeletal muscle cells increased palmitate oxidation and reduced glycogen synthesis. CONCLUSIONS/INTERPRETATION: AMPK regulates FAK signalling in skeletal muscle. Moreover, siRNA-mediated FAK knockdown enhances lipid oxidation while impairing glycogen synthesis in skeletal muscle. Further exploration of the interaction between AMPK and FAK may lead to novel therapeutic strategies for diabetes and other chronic conditions associated with an altered metabolic homeostasis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Músculo Esquelético/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Biópsia , Células Cultivadas , Feminino , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ribonucleotídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
18.
Am J Physiol Endocrinol Metab ; 313(4): E483-E491, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28720584

RESUMO

Insulin resistance is central to the development of type 2 diabetes and related metabolic disorders. Because skeletal muscle is responsible for the majority of whole body insulin-stimulated glucose uptake, regulation of glucose metabolism in this tissue is of particular importance. Although Rho GTPases and many of their affecters influence skeletal muscle metabolism, there is a paucity of information on the protein kinase N (PKN) family of serine/threonine protein kinases. We investigated the impact of PKN2 on insulin signaling and glucose metabolism in primary human skeletal muscle cells in vitro and mouse tibialis anterior muscle in vivo. PKN2 knockdown in vitro decreased insulin-stimulated glucose uptake, incorporation into glycogen, and oxidation. PKN2 siRNA increased 5'-adenosine monophosphate-activated protein kinase (AMPK) signaling while stimulating fatty acid oxidation and incorporation into triglycerides and decreasing protein synthesis. At the transcriptional level, PKN2 knockdown increased expression of PGC-1α and SREBP-1c and their target genes. In mature skeletal muscle, in vivo PKN2 knockdown decreased glucose uptake and increased AMPK phosphorylation. Thus, PKN2 alters key signaling pathways and transcriptional networks to regulate glucose and lipid metabolism. Identification of PKN2 as a novel regulator of insulin and AMPK signaling may provide an avenue for manipulation of skeletal muscle metabolism.


Assuntos
Adenilato Quinase/metabolismo , Glucose/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteína Quinase C/genética , Animais , Ácidos Graxos/metabolismo , Técnicas de Silenciamento de Genes , Glicogênio/metabolismo , Humanos , Técnicas In Vitro , Resistência à Insulina/genética , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação , Biossíntese de Proteínas/genética , Proteína Quinase C/metabolismo , Músculo Quadríceps/citologia , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/metabolismo
19.
Cell Rep ; 18(3): 636-646, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28099843

RESUMO

Serine hydrolases are a large family of multifunctional enzymes known to influence obesity. Here, we performed activity-based protein profiling to assess the functional level of serine hydrolases in liver biopsies from lean and obese humans in order to gain mechanistic insight into the pathophysiology of metabolic disease. We identified reduced hepatic activity of carboxylesterase 2 (CES2) and arylacetamide deacetylase (AADAC) in human obesity. In primary human hepatocytes, CES2 knockdown impaired glucose storage and lipid oxidation. In mice, obesity reduced CES2, whereas adenoviral delivery of human CES2 reversed hepatic steatosis, improved glucose tolerance, and decreased inflammation. Lipidomic analysis identified a network of CES2-regulated lipids altered in human and mouse obesity. CES2 possesses triglyceride and diacylglycerol lipase activities and displayed an inverse correlation with HOMA-IR and hepatic diacylglycerol concentrations in humans. Thus, decreased CES2 is a conserved feature of obesity and plays a causative role in the pathogenesis of obesity-related metabolic disturbances.


Assuntos
Carboxilesterase/metabolismo , Diglicerídeos/metabolismo , Intolerância à Glucose/patologia , Obesidade/patologia , Animais , Carboxilesterase/antagonistas & inibidores , Carboxilesterase/genética , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Células Cultivadas , Dieta Hiperlipídica , Estresse do Retículo Endoplasmático , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Glucose/metabolismo , Intolerância à Glucose/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Peroxidação de Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
20.
Diabetes ; 66(3): 651-662, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28011458

RESUMO

DNA methylation is altered by environmental factors. We hypothesized that DNA methylation is altered in skeletal muscle in response to either insulin or glucose exposure. We performed a genome-wide DNA methylation analysis in muscle from healthy men before and after insulin exposure. DNA methylation of selected genes was determined in muscle from healthy men and men with type 2 diabetes before and after a glucose tolerance test. Insulin altered DNA methylation in the 3' untranslated region of the calcium pump ATP2A3 gene. Insulin increased DNA methylation in the gene body of DAPK3, a gene involved in cell proliferation, apoptosis, and autophagy. DAPK3 methylation was reduced in patients with type 2 diabetes. Carbohydrate ingestion reduced DAPK3 DNA methylation in healthy men and men with type 2 diabetes, suggesting glucose may play a role. Supporting this, DAPK3 DNA methylation was inversely correlated with the 2-h glucose concentration. Whereas glucose incorporation to glycogen was unaltered by small interfering RNA against DAPK3, palmitate oxidation was increased. In conclusion, insulin and glucose exposure acutely alter the DNA methylation profile of skeletal muscle, indicating that DNA methylation constitutes a rapidly adaptive epigenetic mark. Furthermore, insulin and glucose modulate DAPK3 DNA methylation in a reciprocal manner, suggesting a feedback loop in the control of the epigenome.


Assuntos
Metilação de DNA , Proteínas Quinases Associadas com Morte Celular/genética , Diabetes Mellitus Tipo 2/genética , Glucose/farmacologia , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Músculo Esquelético/metabolismo , RNA Mensageiro/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Biópsia , Glicemia/metabolismo , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/metabolismo , Teste de Tolerância a Glucose , Glicogênio/metabolismo , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA