Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903505

RESUMO

Cytochrome b561 proteins (CYB561s) are integral membrane proteins with six trans-membrane domains, two heme-b redox centers, one on each side of the host membrane. The major characteristics of these proteins are their ascorbate reducibility and trans-membrane electron transferring capability. More than one CYB561 can be found in a wide range of animal and plant phyla and they are localized in membranes different from the membranes participating in bioenergization. Two homologous proteins, both in humans and rodents, are thought to participate-via yet unidentified way-in cancer pathology. The recombinant forms of the human tumor suppressor 101F6 protein (Hs_CYB561D2) and its mouse ortholog (Mm_CYB561D2) have already been studied in some detail. However, nothing has yet been published about the physical-chemical properties of their homologues (Hs_CYB561D1 in humans and Mm_CYB561D1 in mice). In this paper we present optical, redox and structural properties of the recombinant Mm_CYB561D1, obtained based on various spectroscopic methods and homology modeling. The results are discussed in comparison to similar properties of the other members of the CYB561 protein family.


Assuntos
Ácido Ascórbico , Elétrons , Humanos , Animais , Camundongos , Oxirredução , Transporte de Elétrons , Ácido Ascórbico/metabolismo , Proteínas Recombinantes/metabolismo
2.
Molecules ; 26(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34834068

RESUMO

Electron transfer within and between proteins is a fundamental biological phenomenon, in which efficiency depends on several physical parameters. We have engineered a number of horse heart cytochrome c single-point mutants with cysteine substitutions at various positions of the protein surface. To these cysteines, as well as to several native lysine side chains, the photoinduced redox label 8-thiouredopyrene-1,3,6-trisulfonate (TUPS) was covalently attached. The long-lived, low potential triplet excited state of TUPS, generated with high quantum efficiency, serves as an electron donor to the oxidized heme c. The rates of the forward (from the label to the heme) and the reverse (from the reduced heme back to the oxidized label) electron transfer reactions were obtained from multichannel and single wavelength flash photolysis absorption kinetic experiments. The electronic coupling term and the reorganization energy for electron transfer in this system were estimated from temperature-dependent experiments and compared with calculated parameters using the crystal and the solution NMR structure of the protein. These results together with the observation of multiexponential kinetics strongly support earlier conclusions that the flexible arm connecting TUPS to the protein allows several shortcut routes for the electron involving through space jumps between the label and the protein surface.


Assuntos
Citocromos c/química , Animais , Cisteína/química , Cisteína/genética , Citocromos c/genética , Transporte de Elétrons , Heme/química , Cavalos , Cinética , Modelos Moleculares , Oxirredução , Mutação Puntual , Conformação Proteica , Pirenos/química
3.
ACS Appl Mater Interfaces ; 13(33): 39018-39029, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34397215

RESUMO

Targeting nanoparticles as drug delivery platforms is crucial to facilitate their cellular entry. Docking of nanoparticles by targeting ligands on cell membranes is the first step for the initiation of cellular uptake. As a model system, we studied brain microvascular endothelial cells, which form the anatomical basis of the blood-brain barrier, and the tripeptide glutathione, one of the most effective targeting ligands of nanoparticles to cross the blood-brain barrier. To investigate this initial docking step between glutathione and the membrane of living brain endothelial cells, we applied our recently developed innovative optical method. We present a microtool, with a task-specific geometry used as a probe, actuated by multifocus optical tweezers to characterize the adhesion probability and strength of glutathione-coated surfaces to the cell membrane of endothelial cells. The binding probability of the glutathione-coated surface and the adhesion force between the microtool and cell membrane was measured in a novel arrangement: cells were cultured on a vertical polymer wall and the mechanical forces were generated laterally and at the same time, perpendicularly to the plasma membrane. The adhesion force values were also determined with more conventional atomic force microscopy (AFM) measurements using functionalized colloidal probes. The optical trapping-based method was found to be suitable to measure very low adhesion forces (≤ 20 pN) without a high level of noise, which is characteristic for AFM measurements in this range. The holographic optical tweezers-directed functionalized microtools may help characterize the adhesion step of nanoparticles initiating transcytosis and select ligands to target nanoparticles.


Assuntos
Membrana Celular/metabolismo , Células Endoteliais/metabolismo , Glutationa/metabolismo , Nanopartículas/metabolismo , Pinças Ópticas , Fenômenos Biofísicos , Barreira Hematoencefálica/metabolismo , Encéfalo , Adesão Celular , Membrana Celular/ultraestrutura , Células Endoteliais/citologia , Galactosamina/química , Humanos , Ligantes , Microscopia de Força Atômica , Nanopartículas/química , Polietilenoglicóis/química , Polímeros/metabolismo , Propriedades de Superfície , Transcitose
4.
Biochim Biophys Acta Biomembr ; 1861(9): 1579-1591, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31301276

RESUMO

The surface charge of brain endothelial cells forming the blood-brain barrier (BBB) is highly negative due to phospholipids in the plasma membrane and the glycocalyx. This negative charge is an important element of the defense systems of the BBB. Lidocaine, a cationic and lipophilic molecule which has anaesthetic and antiarrhytmic properties, exerts its actions by interacting with lipid membranes. Lidocaine when administered intravenously acts on vascular endothelial cells, but its direct effect on brain endothelial cells has not yet been studied. Our aim was to measure the effect of lidocaine on the charge of biological membranes and the barrier function of brain endothelial cells. We used the simplified membrane model, the bacteriorhodopsin (bR) containing purple membrane of Halobacterium salinarum and culture models of the BBB. We found that lidocaine turns the negative surface charge of purple membrane more positive and restores the function of the proton pump bR. Lidocaine also changed the zeta potential of brain endothelial cells in the same way. Short-term lidocaine treatment at a 10 µM therapeutically relevant concentration did not cause major BBB barrier dysfunction, substantial change in cell morphology or P-glycoprotein efflux pump inhibition. Lidocaine treatment decreased the flux of a cationic lipophilic molecule across the cell layer, but had no effect on the penetration of hydrophilic neutral or negatively charged markers. Our observations help to understand the biophysical background of the effect of lidocaine on biological membranes and draws the attention to the interaction of cationic drug molecules at the level of the BBB.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Lidocaína/metabolismo , Lidocaína/farmacologia , Animais , Astrócitos/metabolismo , Transporte Biológico , Encéfalo/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Células Endoteliais , Feminino , Humanos , Masculino , Células PC-3 , Permeabilidade , Ratos , Ratos Wistar
6.
Langmuir ; 32(28): 7250-8, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27315212

RESUMO

Selective deposition of peptides from liquid solutions to n- and p-doped silicon has been demonstrated. The selectivity is governed by peptide/silicon adhesion differences. A noninvasive, fast characterization of the obtained peptide layers is required to promote their application for interfacing silicon-based devices with biological material. In this study we show that spectroscopic ellipsometry-a method increasingly used for the investigation of biointerfaces-can provide essential information about the amount of adsorbed peptide material and the degree of coverage on silicon surfaces. We observed the formation of peptide multilayers for a strongly binding adhesion peptide on p-doped silicon. Application of the patterned layer ellipsometric evaluation method combined with Sellmeier dispersion led to physically consistent results, which describe well the optical properties of peptide layers in the visible spectral range. This evaluation allowed the estimation of surface coverage, which is an important indicator of adsorption quality. The ellipsometric findings were well supported by atomic force microscopy results.


Assuntos
Peptídeos/química , Silício/química , Propriedades de Superfície
8.
Eur Biophys J ; 42(2-3): 159-68, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22526465

RESUMO

Cytochrome b561 (Cyt-b561) proteins constitute a family of trans-membrane proteins that are present in a wide variety of organisms. Two of their characteristic properties are the reducibility by ascorbate (ASC) and the presence of two distinct b-type hemes localized on two opposite sides of the membrane. Here we show that the tonoplast-localized and the putative tumor suppressor Cyt-b561 proteins can be reduced by other reductants than ASC and dithionite. A detailed spectral analysis of the ASC-dependent and dihydrolipoic acid (DHLA)-dependent reduction of these two Cyt-b561 proteins is also presented. Our results are discussed in relation to the known antioxidant capability of DHLA as well as its role in the regeneration of other antioxidant compounds of cells. These results allow us to speculate on new biological functions for the trans-membrane Cyt-b561 proteins.


Assuntos
Antioxidantes/farmacologia , Grupo dos Citocromos b/metabolismo , Ácido Tióctico/análogos & derivados , Sequência de Aminoácidos , Animais , Arabidopsis/enzimologia , Ácido Ascórbico/farmacologia , Bovinos , Grupo dos Citocromos b/química , Camundongos , Dados de Sequência Molecular , Oxirredução/efeitos dos fármacos , Ácido Tióctico/farmacologia
9.
J Bioenerg Biomembr ; 42(2): 125-33, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20221790

RESUMO

Maturation of c-type cytochromes involves the covalent and stereospecific enzymatic attachment of a heme b via thioether linkages to two conserved cysteines within apocytochromes. Horse cytochrome c is readily matured into its native holoform in the cytoplasm of E. coli when co-expressed with yeast cytochrome c heme lyase. Here we report the low yield formation of holocytochrome with covalently attached heme also in the absence of heme lyase. This is the first demonstration of in vivo maturation of a eukaryotic cytochrome c in a prokaryotic cytoplasm without the assistance by a dedicated enzymatic maturation system. The assembled cytochrome c can be oxidized by cytochrome c oxidase, indicating the formation of a functional protein. The absorption spectrum is typical of a low spin, six coordinated c-type heme. Nevertheless, minor spectral differences relative to the native cytochrome c, deviation of the midpoint reduction potential and slightly altered kinetic parameters of the interaction with cytochrome c oxidase emphasize the importance of cytochrome c heme lyase in folding cytochrome c into its native conformation.


Assuntos
Citocromos c/biossíntese , Escherichia coli/metabolismo , Cavalos/genética , Animais , Citocromos c/genética , Citocromos c/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Eletroforese em Gel de Poliacrilamida , Heme/metabolismo
10.
J Chem Inf Model ; 45(6): 1520-6, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16309248

RESUMO

The photoinduced covalent redox label 8-thiouredopyrene-1,3,6-trisulfonate (TUPS) has been attached to two lysine residues (K8 and K39) at opposite sides of horse heart cytochrome c, as well as to cysteines, at the same positions, introduced by site-directed mutagenesis. Electron transfer between TUPS and the heme of cytochrome c deviates from the expected monoexponential kinetic behavior. Neither the overall rate nor the individual exponential components of electron transfer, as followed by kinetic absorption spectroscopy, correlate with the length of the covalent link connecting the dye with the protein. Molecular dynamics calculations show that TUPS can approach the protein surface and occupy several such positions. This heterogeneity may explain the multiexponential electron-transfer kinetics. The calculated optimal electron-transfer pathways do not follow the covalent link but involve through space jumps from the dye to the protein moiety, effectively decoupling the length of the covalent link and the electron-transfer rates.


Assuntos
Citocromos c/química , Transporte de Elétrons/fisiologia , Heme/química , Pirenos/química , Cisteína/química , Citocromos c/genética , Entropia , Cinética , Lisina/química , Modelos Moleculares , Mutação , Conformação Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Espectrofotometria Atômica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA