Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(24)2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38132100

RESUMO

CD30-positive germinal center (GC)-derived B cell lymphomas are frequently linked to Epstein-Barr Virus (EBV) infection. However, a suitable animal model for the investigation of the interplay between γ-herpesvirus and host cells in B cell pathogenesis is currently lacking. Here, we present a novel in vivo model enabling the analysis of genetically modified viruses in combination with genetically modified GC B cells. As a murine γ-herpesvirus, we used MHV-68 closely mirroring the biology of EBV. Our key finding was that Cre-mediated recombination can be successfully induced by an MHV-68 infection in GC B cells from Cγ1-Cre mice allowing for deletion or activation of loxP-flanked cellular genes. The implementation of PrimeFlow RNA assay for MHV-68 demonstrated the enrichment of MHV-68 in GC and isotype-switched B cells. As illustrations of virus and cellular modifications, we inserted the EBV gene LMP2A into the MHV-68 genome and induced constitutively active CD30-signaling in GC B cells through MHV-68 infections, respectively. While the LMP2A-expressing MHV-68 behaved similarly to wildtype MHV-68, virally induced constitutively active CD30-signaling in GC B cells led to the expansion of a pre-plasmablastic population. The findings underscore the potential of our novel tools to address crucial questions about the interaction between herpesviral infections and deregulated cellular gene-expression in future studies.


Assuntos
Infecções por Vírus Epstein-Barr , Infecções por Herpesviridae , Camundongos , Animais , Herpesvirus Humano 4/fisiologia , Linfócitos B/patologia , Centro Germinativo , Infecções por Herpesviridae/patologia , Modelos Animais de Doenças
2.
Front Immunol ; 13: 913275, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110848

RESUMO

Activation of CD40-signaling contributes to the initiation, progression and drug resistance of B cell lymphomas. We contributed to this knowledge by showing that constitutive CD40-signaling in B cells induces B cell hyperplasia and finally B cell lymphoma development in transgenic mice. CD40 activates, among others, the non-canonical NF-ĸB signaling, which is constitutively activated in several human B cell lymphomas and is therefore presumed to contribute to lymphopathogenesis. This prompted us to study the regulatory role of the non-canonical NF-ĸB transcription factor RelB in lymphomagenesis. To this end, we crossed mice expressing a constitutively active CD40 receptor in B cells with conditional RelB-KO mice. Ablation of RelB attenuated pre-malignant B cell expansion, and resulted in an impaired survival and activation of long-term CD40-stimulated B cells. Furthermore, we found that hyperactivation of non-canonical NF-кB signaling enhances the retention of B cells in the follicles of secondary lymphoid organs. RNA-Seq-analysis revealed that several genes involved in B-cell migration, survival, proliferation and cytokine signaling govern the transcriptional differences modulated by the ablation of RelB in long-term CD40-stimulated B cells. Inactivation of RelB did not abrogate lymphoma development. However, lymphomas occurred with a lower incidence and had a longer latency period. In summary, our data suggest that RelB, although it is not strictly required for malignant transformation, accelerates the lymphomagenesis of long-term CD40-stimulated B cells by regulating genes involved in migration, survival and cytokine signaling.


Assuntos
Linfoma de Células B , Linfoma , Fator de Transcrição RelB , Animais , Linfócitos B , Antígenos CD40/genética , Citocinas , Humanos , Linfoma de Células B/genética , Camundongos , Camundongos Transgênicos , NF-kappa B , Fator de Transcrição RelB/genética
3.
Leukemia ; 36(9): 2281-2292, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35851155

RESUMO

The variable clinical course of follicular lymphoma (FL) is determined by the molecular heterogeneity of tumor cells and complex interactions within the tumor microenvironment (TME). IL-4 producing follicular helper T cells (TFH) are critical components of the FL TME. Binding of IL-4 to IL-4R on FL cells activates JAK/STAT signaling. We identified STAT6 mutations (STAT6MUT) in 13% of FL (N = 33/258), all clustered within the DNA binding domain. Gene expression data and immunohistochemistry showed upregulation of IL-4/STAT6 target genes in STAT6MUT FL, including CCL17, CCL22, and FCER2 (CD23). Functionally, STAT6MUT was gain-of-function by serial replating phenotype in pre-B CFU assays. Expression of STAT6MUT enhanced IL-4 induced FCER2/CD23, CCL17 and CCL22 expression and was associated with nuclear accumulation of pSTAT6. RNA sequencing identified PARP14 -a transcriptional switch and co-activator of STAT6- among the top differentially upregulated genes in IL-4 stimulated STAT6MUT lymphoma cells and in STAT6MUT primary FL cells. Quantitative chromatin immunoprecipitation (qChIP) demonstrated binding of STAT6MUT but not STAT6WT to the PARP14 promotor. Reporter assays showed increased IL-4 induced transactivation activity of STAT6MUT at the PARP14 promotor, suggesting a self-reinforcing regulatory circuit. Knock-down of PARP14 or PARP-inhibition abrogated the STAT6MUT gain-of-function phenotype. Thus, our results identify PARP14 as a novel therapeutic target in STAT6MUT FL.


Assuntos
Linfoma de Células B , Linfoma Folicular , Humanos , Imuno-Histoquímica , Interleucina-4 , Poli(ADP-Ribose) Polimerases , Fator de Transcrição STAT6 , Ativação Transcricional , Microambiente Tumoral
4.
Mol Immunol ; 138: 128-136, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34392111

RESUMO

p53 plays a major role in genome maintenance. In addition to multiple p53 functions in the control of DNA repair, a regulation of DNA damage bypass via translesion synthesis has been implied in vitro. Somatic hypermutation of immunoglobulin genes for affinity maturation of antibody responses is based on aberrant translesion polymerase action and must be subject to stringent control to prevent genetic alterations and lymphomagenesis. When studying the role of p53 in somatic hypermutation in vivo, we found altered translesion polymerase-mediated A:T mutagenesis in mice lacking p53 in all organs, but notably not in mice with B cell-specific p53 inactivation, implying that p53 functions in non-B cells may alter mutagenesis in B cells. During class switch recombination, when p53 prevents formation of chromosomal translocations, we in addition detected a B cell-intrinsic role for p53 in altering G:C and A:T mutagenesis. Thus, p53 regulates translesion polymerase activity and shows differential activity during somatic hypermutation versus class switch recombination in vivo. Finally, p53 inhibition leads to increased somatic hypermutation in human B lymphoma cells. We conclude that loss of p53 function may promote genetic instability via multiple routes during antibody diversification in vivo.


Assuntos
Switching de Imunoglobulina/genética , Hipermutação Somática de Imunoglobulina/genética , Proteína Supressora de Tumor p53/fisiologia , Animais , Humanos , Camundongos , Mutagênese/genética
5.
Sci Signal ; 14(682)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33975980

RESUMO

Members of the RAF family of serine-threonine kinases are intermediates in the mitogen-activated protein kinase and extracellular signal-regulated kinase (MAPK-ERK) signaling pathway, which controls key differentiation processes in B cells. By analyzing mice with B cell-specific deletion of Raf1, Braf, or both, we showed that Raf-1 and B-Raf acted together in mediating the positive selection of pre-B and transitional B cells as well as in initiating plasma cell differentiation. However, genetic or chemical inactivation of RAFs led to increased ERK phosphorylation in mature B cells. ERK activation in the absence of Raf-1 and B-Raf was mediated by multiple RAF-independent pathways, with phosphoinositide 3-kinase (PI3K) playing an important role. Furthermore, we found that ERK phosphorylation strongly increased during the transition from activated B cells to pre-plasmablasts. This increase in ERK phosphorylation did not occur in B cells lacking both Raf-1 and B-Raf, which most likely explains the partial block of plasma cell differentiation in mice lacking both RAFs. Collectively, our data indicate that B-Raf and Raf-1 are not necessary to mediate ERK phosphorylation in naïve or activated B cells but are essential for mediating the marked increase in ERK phosphorylation during the transition from activated B cells to pre-plasmablasts.


Assuntos
Linfócitos B/citologia , MAP Quinases Reguladas por Sinal Extracelular , Plasmócitos/citologia , Proteínas Proto-Oncogênicas c-raf , Animais , Diferenciação Celular , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases , Fosforilação , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo
6.
Cell Commun Signal ; 17(1): 89, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31382969

RESUMO

Escape from immune control must be important in the natural course of B-cell lymphomas, especially for those with activation of NF-κB. The pre-clinical LMP1/CD40-expressing transgenic mouse model is characterized by B-cell specific CD40 signaling responsible for NF-κB continuous activation with a spleen monoclonal B-cell tumor after 1 year in 60% of cases. LMP1/CD40 tumors B-cells expressed high levels of PD-L1. This expression was dependent on activation of either NF-κB, JAK1/JAK2 or BTK pathways since these pathways were activated in tumor B-cells and ex vivo treatment with the inhibitory molecules PHA-408, ruxolitinib and ibrutinib led to decrease of its expression. Treatment of LMP1/CD40-expressing lymphomatous mice with an anti-PD-L1 monoclonal antibody induced tumor regression with decreased spleen content, activation and proliferation rate of B-cells as well as a marked increase in T-cell activation, as assessed by CD62L and CD44 expression. These results highlight the interest of therapies targeting the PD-1/PD-L1 axis in activated lymphomas with PD-L1 expression, with possible synergies with tyrosine kinase inhibitors.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Antígeno B7-H1/antagonistas & inibidores , Regulação para Baixo/efeitos dos fármacos , Janus Quinases/antagonistas & inibidores , Linfoma de Células B/tratamento farmacológico , NF-kappa B/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Linhagem Celular Tumoral , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Camundongos , NF-kappa B/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico
7.
Blood ; 133(24): 2597-2609, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-30962205

RESUMO

CD30 is expressed on a variety of B-cell lymphomas, such as Hodgkin lymphoma, primary effusion lymphoma, and a diffuse large B-cell lymphoma subgroup. In normal tissues, CD30 is expressed on some activated B and T lymphocytes. However, the physiological function of CD30 signaling and its contribution to the generation of CD30+ lymphomas are still poorly understood. To gain a better understanding of CD30 signaling in B cells, we studied the expression of CD30 in different murine B-cell populations. We show that B1 cells expressed higher levels of CD30 than B2 cells and that CD30 was upregulated in IRF4+ plasmablasts (PBs). Furthermore, we generated and analyzed mice expressing a constitutively active CD30 receptor in B lymphocytes. These mice displayed an increase in B1 cells in the peritoneal cavity (PerC) and secondary lymphoid organs as well as increased numbers of plasma cells (PCs). TI-2 immunization resulted in a further expansion of B1 cells and PCs. We provide evidence that the expanded B1 population in the spleen included a fraction of PBs. CD30 signals seemed to enhance PC differentiation by increasing activation of NF-κB and promoting higher levels of phosphorylated STAT3 and STAT6 and nuclear IRF4. In addition, chronic CD30 signaling led to B-cell lymphomagenesis in aged mice. These lymphomas were localized in the spleen and PerC and had a B1-like/plasmablastic phenotype. We conclude that our mouse model mirrors chronic B-cell activation with increased numbers of CD30+ lymphocytes and provides experimental proof that chronic CD30 signaling increases the risk of B-cell lymphomagenesis.


Assuntos
Linfócitos B/imunologia , Linfócitos B/patologia , Transformação Celular Neoplásica/patologia , Antígeno Ki-1/imunologia , Linfoma de Células B/metabolismo , Animais , Antígeno Ki-1/metabolismo , Linfoma de Células B/imunologia , Linfoma de Células B/patologia , Camundongos , Camundongos Transgênicos , Plasmócitos/metabolismo , Plasmócitos/patologia , Células Precursoras de Linfócitos B/metabolismo , Células Precursoras de Linfócitos B/patologia , Transdução de Sinais/fisiologia
8.
Nat Commun ; 10(1): 1415, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926791

RESUMO

B-cell lymphoma (BCL) is the most common hematologic malignancy. While sequencing studies gave insights into BCL genetics, identification of non-mutated cancer genes remains challenging. Here, we describe PiggyBac transposon tools and mouse models for recessive screening and show their application to study clonal B-cell lymphomagenesis. In a genome-wide screen, we discover BCL genes related to diverse molecular processes, including signaling, transcriptional regulation, chromatin regulation, or RNA metabolism. Cross-species analyses show the efficiency of the screen to pinpoint human cancer drivers altered by non-genetic mechanisms, including clinically relevant genes dysregulated epigenetically, transcriptionally, or post-transcriptionally in human BCL. We also describe a CRISPR/Cas9-based in vivo platform for BCL functional genomics, and validate discovered genes, such as Rfx7, a transcription factor, and Phip, a chromatin regulator, which suppress lymphomagenesis in mice. Our study gives comprehensive insights into the molecular landscapes of BCL and underlines the power of genome-scale screening to inform biology.


Assuntos
Elementos de DNA Transponíveis/genética , Testes Genéticos/métodos , Linfoma de Células B/genética , Animais , Sistemas CRISPR-Cas/genética , Células Clonais , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Genes Neoplásicos , Genes Supressores de Tumor , Estudos de Associação Genética , Humanos , Perda de Heterozigosidade , Linfoma de Células B/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos B/metabolismo , Reprodutibilidade dos Testes
10.
Nat Commun ; 9(1): 3839, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242258

RESUMO

The Wnt signalling pathway, one of the core de-regulated pathways in chronic lymphocytic leukaemia (CLL), is activated in only a subset of patients through somatic mutations. Here we describe alternative, microenvironment-dependent mechanisms of Wnt activation in malignant B cells. We show that tumour cells specifically induce Notch2 activity in mesenchymal stromal cells (MSCs) required for the transcription of the complement factor C1q. MSC-derived C1q in turn inhibits Gsk3-ß mediated degradation of ß-catenin in CLL cells. Additionally, stromal Notch2 activity regulates N-cadherin expression in CLL cells, which interacts with and further stabilises ß-catenin. Together, these stroma Notch2-dependent mechanisms induce strong activation of canonical Wnt signalling in CLL cells. Pharmacological inhibition of the Wnt pathway impairs microenvironment-mediated survival of tumour cells. Similarly, inhibition of Notch signalling diminishes survival of stroma-protected CLL cells in vitro and disease engraftment in vivo. Notch2 activation in the microenvironment is a pre-requisite for the activation of canonical Wnt signalling in tumour cells.


Assuntos
Células da Medula Óssea/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Células-Tronco Mesenquimais/metabolismo , Receptor Notch2/metabolismo , Via de Sinalização Wnt , Animais , Linhagem Celular , Reprogramação Celular , Humanos , Camundongos , Receptor Cross-Talk , beta Catenina/metabolismo
11.
PLoS Biol ; 16(9): e2005233, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30226866

RESUMO

While Notch signaling has been proposed to play a key role in fibrosis, the direct molecular pathways targeted by Notch signaling and the precise ligand and receptor pair that are responsible for kidney disease remain poorly defined. In this study, we found that JAG1 and NOTCH2 showed the strongest correlation with the degree of interstitial fibrosis in a genome-wide expression analysis of a large cohort of human kidney samples. Transcript analysis of mouse kidney disease models, including folic-acid (FA)-induced nephropathy, unilateral ureteral obstruction (UUO), or apolipoprotein L1 (APOL1)-associated kidney disease, indicated that Jag1 and Notch2 levels were higher in all analyzed kidney fibrosis models. Mice with tubule-specific deletion of Jag1 or Notch2 (Kspcre/Jag1flox/flox and Kspcre/Notch2flox/flox) had no kidney-specific alterations at baseline but showed protection from FA-induced kidney fibrosis. Tubule-specific genetic deletion of Notch1 and global knockout of Notch3 had no effect on fibrosis. In vitro chromatin immunoprecipitation experiments and genome-wide expression studies identified the mitochondrial transcription factor A (Tfam) as a direct Notch target. Re-expression of Tfam in tubule cells prevented Notch-induced metabolic and profibrotic reprogramming. Tubule-specific deletion of Tfam resulted in fibrosis. In summary, Jag1 and Notch2 play a key role in kidney fibrosis development by regulating Tfam expression and metabolic reprogramming.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteína Jagged-1/metabolismo , Rim/metabolismo , Rim/patologia , Proteínas Mitocondriais/metabolismo , Receptor Notch2/metabolismo , Fatores de Transcrição/metabolismo , Animais , Desdiferenciação Celular , Proliferação de Células , Células Epiteliais/metabolismo , Fibrose , Ontologia Genética , Genótipo , Humanos , Túbulos Renais/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Transdução de Sinais
12.
Immunity ; 49(1): 120-133.e9, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30005826

RESUMO

B lymphocytes can suppress immunity through interleukin (IL)-10 production in infectious, autoimmune, and malignant diseases. Here, we have identified a natural plasma cell subset that distinctively expresses the inhibitory receptor LAG-3 and mediates this function in vivo. These plasma cells also express the inhibitory receptors CD200, PD-L1, and PD-L2. They develop from various B cell subsets in a B cell receptor (BCR)-dependent manner independently of microbiota in naive mice. After challenge they upregulate IL-10 expression via a Toll-like receptor-driven mechanism within hours and without proliferating. This function is associated with a unique transcriptome and epigenome, including the lowest amount of DNA methylation at the Il10 locus compared to other B cell subsets. Their augmented accumulation in naive mutant mice with increased BCR signaling correlates with the inhibition of memory T cell formation and vaccine efficacy after challenge. These natural regulatory plasma cells may be of broad relevance for disease intervention.


Assuntos
Antígenos CD/genética , Expressão Gênica , Interleucina-10/biossíntese , Plasmócitos/imunologia , Animais , Antígenos CD/imunologia , Subpopulações de Linfócitos B/imunologia , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Interleucina-10/genética , Ativação Linfocitária , Masculino , Camundongos , Plasmócitos/fisiologia , Receptores de Antígenos de Linfócitos B/metabolismo , Salmonelose Animal/imunologia , Transdução de Sinais , Linfócitos T/imunologia , Receptores Toll-Like/metabolismo , Regulação para Cima/genética , Vacinas/imunologia , Proteína do Gene 3 de Ativação de Linfócitos
13.
Nat Commun ; 8: 14715, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28276457

RESUMO

Immune homeostasis in intestinal tissues depends on the generation of regulatory T (Treg) cells. CD103+ dendritic cells (DCs) acquire microbiota-derived material from the gut lumen for transport to draining lymph nodes and generation of receptor-related orphan γt+ (RORγt+) Helios--induced Treg (iTreg) cells. Here we show CD40-signalling as a microbe-independent signal that can induce migration of CD103+ DCs from the lamina propria (LP) to the mesenteric lymph nodes. Transgenic mice with constitutive CD11c-specific CD40-signalling have reduced numbers of CD103+ DCs in LP and a low frequency of RORγt+Helios- iTreg cells, exacerbated inflammatory Th1/Th17 responses, high titres of microbiota-specific immunoglobulins, dysbiosis and fatal colitis, but no pathology is detected in other tissues. Our data demonstrate a CD40-dependent mechanism capable of abrogating iTreg cell induction by DCs, and suggest that the CD40L/CD40-signalling axis might be able to intervene in the generation of new iTreg cells in order to counter-regulate immune suppression to enhance immunity.


Assuntos
Antígenos CD40/imunologia , Colite/imunologia , Células Dendríticas/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antígenos CD40/genética , Antígenos CD40/metabolismo , Colite/genética , Colite/metabolismo , Células Dendríticas/metabolismo , Microbioma Gastrointestinal/imunologia , Cadeias alfa de Integrinas/imunologia , Cadeias alfa de Integrinas/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/imunologia , Intestinos/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Linfócitos T Reguladores/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo
14.
Haematologica ; 102(5): 883-894, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28232371

RESUMO

While c-Myc dysregulation is constantly associated with highly proliferating B-cell tumors, nuclear factor (NF)-κB addiction is found in indolent lymphomas as well as diffuse large B-cell lymphomas, either with an activated B-cell like phenotype or associated with the Epstein-Barr virus. We raised the question of the effect of c-Myc in B cells with NF-κB activated by three different inducers: Epstein-Barr virus-latency III program, TLR9 and CD40. Induction of c-Myc overexpression increased proliferation of Epstein-Barr virus-latency III immortalized B cells, an effect that was dependent on NF-κB. Results from transcriptomic signatures and functional studies showed that c-Myc overexpression increased Epstein-Barr virus-latency III-driven proliferation depending on NF-κB. In vitro, induction of c-Myc increased proliferation of B cells with TLR9-dependant activation of MyD88, with decreased apoptosis. In the transgenic λc-Myc mouse model with c-Myc overexpression in B cells, in vivo activation of MyD88 by TLR9 induced splenomegaly related to an increased synthesis phase (S-phase) entry of B cells. Transgenic mice with both continuous CD40 signaling in B cells and the λc-Myc transgene developed very aggressive lymphomas with characteristics of activated diffuse large B-cell lymphomas. The main characteristic gene expression profile signatures of these tumors were those of proliferation and energetic metabolism. These results suggest that c-Myc is an NF-κB co-transforming event in aggressive lymphomas with an activated phenotype, activated B-cell like diffuse large B-cell lymphomas. This would explain why NF-κB is associated with both indolent and aggressive lymphomas, and opens new perspectives on the possibility of combinatory therapies targeting both the c-Myc proliferating program and NF-κB activation pathways in diffuse large B-cell lymphomas.


Assuntos
Linfócitos B/metabolismo , Transformação Celular Viral , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Apoptose/genética , Linfócitos B/virologia , Antígenos CD40/genética , Antígenos CD40/metabolismo , Linhagem Celular Transformada , Proliferação de Células/genética , Perfilação da Expressão Gênica/métodos , Herpesvirus Humano 4/fisiologia , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais/genética
15.
Blood ; 128(21): 2517-2526, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27742706

RESUMO

The Bruton tyrosine kinase (BTK) inhibitor ibrutinib induces responses in 70% of patients with relapsed and refractory mantle cell lymphoma (MCL). Intrinsic resistance can occur through activation of the nonclassical NF-κB pathway and acquired resistance may involve the BTK C481S mutation. Outcomes after ibrutinib failure are dismal, indicating an unmet medical need. We reasoned that newer heat shock protein 90 (HSP90) inhibitors could overcome ibrutinib resistance by targeting multiple oncogenic pathways in MCL. HSP90 inhibition induced the complete degradation of both BTK and IκB kinase α in MCL lines and CD40-dependent B cells, with downstream loss of MAPK and nonclassical NF-κB signaling. A proteome-wide analysis in MCL lines and an MCL patient-derived xenograft identified a restricted set of targets from HSP90 inhibition that were enriched for factors involved in B-cell receptor and JAK/STAT signaling, the nonclassical NF-κB pathway, cell-cycle regulation, and DNA repair. Finally, multiple HSP90 inhibitors potently killed MCL lines in vitro, and the clinical agent AUY922 was active in vivo against both patient-derived and cell-line xenografts. Together, these findings define the HSP90-dependent proteome in MCL. Considering the disappointing clinical activity of HSP90 inhibitors in other contexts, trials in patients with MCL will be essential for defining the efficacy of and mechanisms of resistance after ibrutinib failure.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Isoxazóis/farmacologia , Linfoma de Célula do Manto/tratamento farmacológico , Pirazóis/farmacologia , Pirimidinas/farmacologia , Resorcinóis/farmacologia , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/metabolismo , Linfoma de Célula do Manto/patologia , Camundongos , Mutação de Sentido Incorreto , Piperidinas , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Nat Commun ; 7: 12597, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27576369

RESUMO

A population of monocytes, known as Ly6C(lo) monocytes, patrol blood vessels by crawling along the vascular endothelium. Here we show that endothelial cells control their origin through Notch signalling. Using combinations of conditional genetic deletion strategies and cell-fate tracking experiments we show that Notch2 regulates conversion of Ly6C(hi) monocytes into Ly6C(lo) monocytes in vivo and in vitro, thereby regulating monocyte cell fate under steady-state conditions. This process is controlled by Notch ligand delta-like 1 (Dll1) expressed by a population of endothelial cells that constitute distinct vascular niches in the bone marrow and spleen in vivo, while culture on recombinant DLL1 induces monocyte conversion in vitro. Thus, blood vessels regulate monocyte conversion, a form of committed myeloid cell fate regulation.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Monócitos/fisiologia , Receptor Notch2/metabolismo , Transdução de Sinais/fisiologia , Transferência Adotiva , Animais , Antígenos Ly/metabolismo , Células da Medula Óssea/metabolismo , Proteínas de Ligação ao Cálcio , Diferenciação Celular , Células Cultivadas , Células Endoteliais/metabolismo , Proteínas Ligadas por GPI/metabolismo , Voluntários Saudáveis , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos , Camundongos Knockout , Receptores de IgG/metabolismo , Proteínas Recombinantes/metabolismo , Baço/citologia
17.
Cancer Res ; 74(16): 4318-28, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24938766

RESUMO

CD40, a member of the TNF receptor family, is expressed on all mature B cells and on most B-cell lymphomas. Recently, we have shown that constitutive activation of CD40 signaling in B cells induced by a fusion protein consisting of the transmembrane part of the Epstein-Barr viral latent membrane protein 1 (LMP1) and the cytoplasmic part of CD40 (LMP1/CD40) drives B-cell lymphoma development in transgenic mice. Because LMP1/CD40-expressing B cells showed an upregulation of CD19, we investigated CD19's function in CD40-driven B-cell expansion and lymphomagenesis. Here, we demonstrate that ablation of CD19 in LMP1/CD40 transgenic mice resulted in a severe loss and reduced lifespan of mature B cells and completely abrogated development of B-cell lymphoma. CD19 is localized to lipid rafts and constitutively activated by the LMP1/CD40 fusion protein in B cells. We provide evidence that the improved survival and malignant transformation of LMP1/CD40-expressing B cells are dependent on activation of the MAPK Erk that is mediated through CD19 in a PI3K-dependent manner. Our data suggest that constitutively active CD40 is dependent on CD19 to transmit survival and proliferation signals. Moreover, we detected a similarly functioning prosurvival pathway involving phosphorylated CD19 and PI3K-dependent Erk phosphorylation in human diffuse large B-cell lymphoma cell lines. Our data provide evidence that CD19 plays an important role in transmitting survival and proliferation signals downstream of CD40 and therefore might be an interesting therapeutic target for the treatment of lymphoma undergoing chronic CD40 signaling.


Assuntos
Antígenos CD19/imunologia , Linfócitos B/imunologia , Antígenos CD40/imunologia , Linfoma/imunologia , Animais , Linfócitos B/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/imunologia , Humanos , Ativação Linfocitária/imunologia , Linfoma/genética , Linfoma/patologia , Camundongos , Camundongos Transgênicos , Fosforilação
18.
Nucleic Acids Res ; 42(6): 3666-74, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24423870

RESUMO

Immunoglobulin (Ig) diversification by somatic hypermutation in germinal center B cells is instrumental for maturation of the humoral immune response, but also bears the risk of excessive or aberrant genetic changes. Thus, introduction of DNA damage by activation-induced cytidine deaminase as well as DNA repair by multiple pathways need to be tightly regulated during the germinal center response to prevent lymphomagenesis. In the present study, we show that DNA damage checkpoint signaling via checkpoint kinase 1 (Chk1) negatively regulates somatic hypermutation. Chk1 inhibition in human B cell lymphoma lines as well as inactivation of Chk1 alleles by gene targeting in DT40 B cells leads to increased somatic hypermutation. This is apparently due to changes in DNA repair pathways regulated by Chk1, such as a decreased homologous recombination efficiency that also leads to decreased Ig gene conversion in DT40. Our data show that Chk1 signaling plays a crucial role in regulation of Ig diversification and sheds unexpected light on potential origins of aberrant somatic hypermutation in B cell lymphomagenesis.


Assuntos
Proteínas Quinases/fisiologia , Hipermutação Somática de Imunoglobulina , Animais , Linfócitos B/imunologia , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Reparo do DNA , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases/genética
19.
PLoS One ; 8(11): e80312, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24265806

RESUMO

Genetic redundancy poses a major problem to the analysis of gene function. RNA interference allows the down-regulation of several genes simultaneously, offering the possibility to overcome genetic redundancy, something not easily achieved with traditional genetic approaches. Previously we have used a polycistronic miR155-based framework to knockdown expression of three genes of the early B cell factor family in cultured cells. Here we develop the system further by generating transgenic mice expressing the RNAi construct in vivo in an inducible manner. Expression of the transgene from the strong CAG promoter is compatible with a normal function of the basal miRNA/RNAi machinery, and the miR155 framework readily allows inducible expression from the Rosa26 locus as shown by Gfp. However, expression of the transgene in hematopoietic cells does not lead to changes in B cell development and neuronal expression does not affect cerebellar architecture as predicted from genetic deletion studies. Protein as well as mRNA levels generated from Ebf genes in hetero- and homozygous animals are comparable to wild-type levels. A likely explanation for the discrepancy in the effectiveness of the RNAi construct between cultured cells and transgenic animals lies in the efficiency of the sequences used, possibly together with the complexity of the transgene. Since new approaches allow to overcome efficiency problems of RNAi sequences, the data lay the foundation for future work on the simultaneous knockdown of several genes in vivo.


Assuntos
Regulação da Expressão Gênica , Inativação Gênica , Família Multigênica , Interferência de RNA , Animais , Linhagem Celular , Cerebelo/metabolismo , Regulação para Baixo , Células-Tronco Embrionárias/metabolismo , Expressão Gênica , Ordem dos Genes , Marcação de Genes , Camundongos , Camundongos Transgênicos , Células Precursoras de Linfócitos B/metabolismo , Transativadores/genética , Transativadores/metabolismo , Transgenes
20.
Hepatology ; 57(6): 2469-79, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23315998

RESUMO

UNLABELLED: Notch signaling through the Notch2 receptor is essential for normal biliary tubulogenesis during liver development. However, the signaling events downstream of Notch2 critical for this process are less well defined. Furthermore, whether Notch signaling also underlies adult hepatic cell fate decisions is largely unknown. By implementing different genetic mouse models, we provide a comprehensive analysis that defines the role of Notch in cell fate control in the developing and adult liver. We show that cell-specific activation of Notch2 signaling by a Notch2IC (N2IC) transgene leads to rapid biliary specification of embryonic hepatoblasts, but also-when expressed in up to 6-month-old adult livers-rapidly reprograms adult hepatocytes to biliary cells with formation of tubular-cystic structures. When directed specifically to the adult biliary and facultative liver progenitor cell compartment, Notch2 is capable of inducing a ductular reaction. Furthermore, we characterized the significance of key effectors of canonical Notch signaling during normal development and in N2IC-expressing models. We demonstrate that tubule formation of intrahepatic bile ducts during embryonic development as well as N2IC-induced specification and morphogenesis of embryonic hepatoblasts and biliary conversion of adult hepatocytes all critically rely on canonical Notch signaling via recombination signal binding protein (RBP)-Jκ but do not require Hes1. CONCLUSION: Notch2 appears to be the main determinant not only of biliary commitment of embryonic hepatoblasts during development but also of biliary reprogramming of adult hepatocytes. Notch2-dictated cell fates and morphogenesis in both embryonic hepatoblasts and adult hepatocytes rely on canonical Notch signaling but do not require Hes1. Adult liver cells possess a remarkable plasticity to assume new cell fates when embryonic signaling pathways are active. (HEPATOLOGY 2013).


Assuntos
Fígado/embriologia , Fígado/metabolismo , Receptor Notch2/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hepatócitos/fisiologia , Proteínas de Homeodomínio/metabolismo , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Camundongos , Camundongos Transgênicos , Morfogênese , Coelhos , Ratos , Receptor Notch2/genética , Transdução de Sinais , Fatores de Transcrição HES-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA