Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37370730

RESUMO

Female BRCA1/BRCA2 (=BRCA) pathogenic variants (PVs) carriers are at a substantially higher risk for developing breast cancer (BC) compared with the average risk population. Detection of BC at an early stage significantly improves prognosis. To facilitate early BC detection, a surveillance scheme is offered to BRCA PV carriers from age 25-30 years that includes annual MRI based breast imaging. Indeed, adherence to the recommended scheme has been shown to be associated with earlier disease stages at BC diagnosis, more in-situ pathology, smaller tumors, and less axillary involvement. While MRI is the most sensitive modality for BC detection in BRCA PV carriers, there are a significant number of overlooked or misinterpreted radiological lesions (mostly enhancing foci), leading to a delayed BC diagnosis at a more advanced stage. In this study we developed an artificial intelligence (AI)-network, aimed at a more accurate classification of enhancing foci, in MRIs of BRCA PV carriers, thus reducing false-negative interpretations. Retrospectively identified foci in prior MRIs that were either diagnosed as BC or benign/normal in a subsequent MRI were manually segmented and served as input for a convolutional network architecture. The model was successful in classification of 65% of the cancerous foci, most of them triple-negative BC. If validated, applying this scheme routinely may facilitate 'earlier than early' BC diagnosis in BRCA PV carriers.

2.
Int J Comput Assist Radiol Surg ; 14(2): 249-257, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30367322

RESUMO

PURPOSE: Contrast-enhanced spectral mammography (CESM) is a recently developed breast imaging technique. CESM relies on dual-energy acquisition following contrast agent injection to improve mammography sensitivity. CESM is comparable to contrast-enhanced MRI in terms of sensitivity, at a fraction of the cost. However, since lesion variability is large, even with the improved visibility provided by CESM, differentiation between benign and malignant enhancement is not accurate and a biopsy is usually performed for final assessment. Breast biopsies can be stressful to the patient and are expensive to healthcare systems. Moreover, as the biopsies results are most of the time benign, a specificity improvement in the radiologist diagnosis is required. This work presents a deep learning-based decision support system, which aims at improving the specificity of breast cancer diagnosis by CESM without affecting sensitivity. METHODS: We compare two analysis approaches, fine-tuning a pretrained network and fully training a convolutional neural network, for classification of CESM breast mass as benign or malignant. Breast Imaging Reporting and Data Systems (BIRADS) is a radiological lexicon, used with breast images, to categorize lesions. We improve each classification network by incorporating BIRADS textual features as an additional input to the network. We evaluate two ways of BIRADS fusion as network input: feature fusion and decision fusion. This leads to multimodal network architectures. At classification, we also exploit information from apparently normal breast tissue in the CESM of the considered patient, leading to a patient-specific classification. RESULTS: We evaluate performance using fivefold cross-validation, on 129 randomly selected breast lesions annotated by an experienced radiologist. Each annotation includes a contour of the mass in the image, biopsy-proven label of benign or malignant lesion and BIRADS descriptors. At 100% sensitivity, specificity of 66% was achieved using a multimodal network, which combines inputs at feature level and patient-specific classification. CONCLUSIONS: The presented multimodal network may significantly reduce benign biopsies, without compromising sensitivity.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Meios de Contraste , Mamografia/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Biópsia , Aprendizado Profundo , Feminino , Humanos , Sensibilidade e Especificidade
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 3973-3976, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28269155

RESUMO

Histopathological analysis is crucial for the diagnosis of a large number of cancer types. A lot of progress has been made in the development of molecular based assays, but many of the cases still require the careful analysis of the stained tissue under a bright-field microscope and its analysis. This procedure is costly and time-consuming. We present a novel method for classification of cancer cells in lymph node images. It is based on the measurement of the spectral image of hematoxylin and eosin stained sample under the microscope and the analysis of the acquired data using state of the art machine learning techniques. The method is based on the analysis of the spectral information of the cells as well as their morphological properties. A large number of descriptors is extracted for each cell location, which are used to train a supervised classifier which discriminates between normal and cancer cells. We show that a reliable analysis can be made with detection rate (recall) of 81%-100% for the cancer class.


Assuntos
Algoritmos , Neoplasias da Mama/patologia , Processamento de Imagem Assistida por Computador , Linfonodos/patologia , Microscopia/métodos , Automação , Núcleo Celular/patologia , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA