Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Cell Mol Life Sci ; 78(21-22): 6735-6744, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34459952

RESUMO

Kallikrein-related peptidases (KLKs) or kallikreins have been linked to diverse (patho) physiological processes, such as the epidermal desquamation and inflammation, seminal clot liquefaction, neurodegeneration, and cancer. Recent mounting evidence suggests that KLKs also represent important regulators of viral infections. It is well-established that certain enveloped viruses, including influenza and coronaviruses, require proteolytic processing of their hemagglutinin or spike proteins, respectively, to infect host cells. Similarly, the capsid protein of the non-enveloped papillomavirus L1 should be proteolytically cleaved for viral uncoating. Consequently, extracellular or membrane-bound proteases of the host cells are instrumental for viral infections and represent potential targets for drug development. Here, we summarize how extracellular proteolysis mediated by the kallikreins is implicated in the process of influenza (and potentially coronavirus and papillomavirus) entry into host cells. Besides direct proteolytic activation of viruses, KLK5 and 12 promote viral entry indirectly through proteolytic cascade events, like the activation of thrombolytic enzymes that also can process hemagglutinin, while additional functions of KLKs in infection cannot be excluded. In the light of recent evidence, KLKs represent potential host targets for the development of new antivirals. Humanized animal models to validate their key functions in viral infections will be valuable.


Assuntos
COVID-19/enzimologia , COVID-19/virologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Calicreínas/metabolismo , SARS-CoV-2 , Viroses/enzimologia , Animais , Asma/etiologia , Coronavirus/genética , Coronavirus/patogenicidade , Coronavirus/fisiologia , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Orthomyxoviridae/genética , Orthomyxoviridae/patogenicidade , Orthomyxoviridae/fisiologia , Infecções por Papillomavirus/enzimologia , Infecções por Papillomavirus/virologia , Infecções por Picornaviridae/complicações , Infecções por Picornaviridae/enzimologia , Infecções por Picornaviridae/virologia , Processamento de Proteína Pós-Traducional , Proteólise , Rhinovirus/patogenicidade , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Infecção pelo Vírus da Varicela-Zoster/enzimologia , Infecção pelo Vírus da Varicela-Zoster/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Viroses/virologia , Internalização do Vírus
3.
J Dtsch Dermatol Ges ; 19(6): 828-832, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33768660

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) is an incurable severe skin disease caused by loss of collagen VII, an extracellular protein that ensures skin cohesion. It manifests in skin blistering and unresolved cycles of wounding and healing that progressively lead to dermal stiffening and early development of aggressive cutaneous squamous cell carcinomas. Inflammation and subsequent tissue fibrosis highly contribute to RDEB pathogenicity and targeting them could provide new therapeutic options. Kallikreins (KLKs) are epidermal secreted proteases, which contribute to skin desquamation and inflammation. Kallikreins are involved in the pathogenesis of several inflammatory skin disorders, but interestingly also in the initiation and progression of different cancers. Our project aims at deciphering the role of KLKs in inflammation, fibrosis, and tumor development in RDEB.


Assuntos
Epidermólise Bolhosa Distrófica , Colágeno Tipo VII/genética , Epiderme , Epidermólise Bolhosa Distrófica/genética , Humanos , Peptídeo Hidrolases , Pele
4.
Pathol Res Pract ; 217: 153276, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33249398

RESUMO

Melanoma is an aggressive form of cancer with poor prognosis therefore, identification of associated pathophysiological mechanisms is imperative towards the development of new therapeutic strategies. The KLK6 is a serine protease normally expressed in the epidermis. Recently, we found that elimination of Klk6 in mice results in enhanced resistance to chemically induced non-melanoma skin cancer. To delineate putative roles of KLK6 in melanoma, the invasive KLK6-non-expressing MDA-MB-435 melanoma cell line was stably transfected with the full-length KLK6 cDNA and expression of the corresponding RNA and protein were confirmed. Interestingly, restoration of KLK6 expression resulted in markedly suppressed growth of primary tumors when orthotopically implanted in SCID mice. Analysis of data retrieved from the human protein atlas revealed that melanomas with high KLK6 expression have a trend for longer survival. Collectively, we suggest that KLK6 inhibits growth of melanomas.


Assuntos
Calicreínas/biossíntese , Melanoma/enzimologia , Neoplasias Cutâneas/enzimologia , Animais , Neoplasias da Mama , Linhagem Celular Tumoral , Indução Enzimática , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Calicreínas/genética , Melanoma/genética , Melanoma/patologia , Camundongos SCID , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Carga Tumoral
5.
Biochim Biophys Acta Mol Basis Dis ; 1865(11): 165520, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31381994

RESUMO

Epidermal desquamation involves a finely-tuned proteolytic cascade ensuring the regulated cleavage of desmosomes that releases old stratum corneum outermost layers. Although the roles of desmosomes in normal physiology are well-established, their putative involvement in cancer remains unexplored. The KLK5 protease is thought of having fundamental roles in epidermal proteolysis and homeostasis, and its aberrant activity has been linked to skin pathologies. We found that deletion of Klk5 results in significantly higher numbers of lengthier desmosomes and enhanced skin strength. Klk5-/- mice retained normal skin barrier function and are resistant to chemically-induced skin tumorigenesis. The resistance to tumorigenesis was not due to inhibition of inflammation, and on the contrary, absence of Klk5 increased the TPA-induced inflammatory skin response. We found that increased desmosomes and reduced proteolysis prevent oncogenic signaling by capturing ß-catenin into the cytoplasm and facilitate epidermal keratinocyte apoptosis, thus, inhibiting tumor initiation. We highlight that the skin ultrastructure affects early neoplastic transformation by modulating intracellular signaling and suggest that tissue reinforcement provides a novel mode of tumor suppression.


Assuntos
Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Calicreínas/genética , Neoplasias Cutâneas/genética , Animais , Carcinogênese/patologia , Desmossomos/genética , Desmossomos/patologia , Deleção de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteólise , Pele/metabolismo , Pele/patologia , Neoplasias Cutâneas/patologia
6.
J Dermatol Sci ; 95(1): 28-35, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31255470

RESUMO

BACKGROUND: Netherton syndrome (NS) is a rare but severe type of ichthyosis characterized by atopy, allergies, and potentially lethal skin overdesquamation associated with highly elevated proteolytic activities in LEKTI-deficient epidermis. NS symptoms are recapitulated in Spink5-/- mouse where the gene encoding Lekti has been invalidated. Spink5-/- mice die within 5h from birth due to their severe skin barrier defect leading to dehydration. Spink5-/- mice also serve as a model for atopic dermatitis. The KLK6 protease is expressed by epidermal keratinocytes and shown in vitro to cleave desmosomal components. OBJECTIVE: To investigate in vivo whether KLK6 is implicated in epidermal overdesquamation and/or inflammation associated with NS. METHODS: The role of KLK6 was evaluated by generating Spink5-/-Klk6-/- double knockout mice. The phenotype was assessed by macroscopic observation, immunohistochemistry for differentiation markers, in situ zymography for proteolysis, and quantification of proinflammatory cytokines. RESULTS: Elimination of Klk6 in Spink5-/- remarkably suppresses the expression of Tslp, a major itching-inducing factor and driver of allergic reactions. Tnfα and the Th17 promoting cytokine Il-23 were also suppressed. Spink5-/-Klk6-/- mice display normalized keratinocyte differentiation, nevertheless, epidermal proteolytic activities and the associated overdesquamation were not ameliorated, and Spink5-/-Klk6-/- still died from a severe epidermal barrier defect as the Spink5-/-. CONCLUSIONS: Ablation of Klk6 largely suppresses epidermal inflammation but cannot rescue overdesquamation leading to the lethal NS phenotype. Nonetheless, our findings demonstrate for the first time that KLK6 is implicated in skin inflammation and may represent a novel druggable target for NS and other inflammatory conditions e.g. atopic dermatitis.


Assuntos
Citocinas/imunologia , Calicreínas/imunologia , Síndrome de Netherton/imunologia , Inibidor de Serinopeptidase do Tipo Kazal 5/genética , Animais , Biópsia , Diferenciação Celular/imunologia , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Epiderme/imunologia , Epiderme/patologia , Voluntários Saudáveis , Humanos , Calicreínas/genética , Calicreínas/metabolismo , Queratinócitos/imunologia , Queratinócitos/patologia , Camundongos , Camundongos Knockout , Síndrome de Netherton/genética , Síndrome de Netherton/patologia , Cultura Primária de Células , Linfopoietina do Estroma do Timo
7.
EBioMedicine ; 44: 502-515, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31078522

RESUMO

BACKGROUND: Missense mutations in keratin 5 and 14 genes cause the severe skin fragility disorder epidermolysis bullosa simplex (EBS) by collapsing of the keratin cytoskeleton into cytoplasmic protein aggregates. Despite intense efforts, no molecular therapies are available, mostly due to the complex phenotype of EBS, comprising cell fragility, diminished adhesion, skin inflammation and itch. METHODS: We extensively characterized KRT5 and KRT14 mutant keratinocytes from patients with severe generalized EBS following exposure to the chemical chaperone 4-phenylbutyrate (4-PBA). FINDINGS: 4-PBA diminished keratin aggregates within EBS cells and ameliorated their inflammatory phenotype. Chemoproteomics of 4-PBA-treated and untreated EBS cells revealed reduced IL1ß expression- but also showed activation of Wnt/ß-catenin and NF-kB pathways. The abundance of extracellular matrix and cytoskeletal proteins was significantly altered, coinciding with diminished keratinocyte adhesion and migration in a 4-PBA dose-dependent manner. INTERPRETATION: Together, our study reveals a complex interplay of benefits and disadvantages that challenge the use of 4-PBA in skin fragility disorders.


Assuntos
Epidermólise Bolhosa/metabolismo , Epidermólise Bolhosa/patologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinas/metabolismo , Fenilbutiratos/farmacologia , Animais , Apoptose/genética , Biomarcadores , Biópsia , Adesão Celular , Comunicação Celular , Linhagem Celular , Citoesqueleto/metabolismo , Modelos Animais de Doenças , Epidermólise Bolhosa/etiologia , Matriz Extracelular/metabolismo , Humanos , Imuno-Histoquímica , Queratinócitos/patologia , Camundongos , Fenótipo , Fenilbutiratos/uso terapêutico , Transporte Proteico , Proteoma , Proteômica/métodos , Transdução de Sinais , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia
8.
Mol Oncol ; 13(11): 2329-2343, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30980596

RESUMO

Kallikrein-related peptidase 6 (KLK6) is a serine protease normally expressed in mammary tissue and aberrantly regulated in breast cancer. At physiological levels, KLK6 functions as a suppressor of breast cancer, while its aberrant overexpression (> 50-fold higher than normal) is characteristic of a subset of breast cancers and has been linked to accelerated growth of primary breast tumors in severe combined immunodeficiency mice (Pampalakis et al. Cancer Res 2009, 69, 3779). Here, we investigated the molecular mechanisms underlying the concentration-dependent functions of KLK6 by comparing MDA-MB-231 stable transfectants expressing increasing levels of KLK6 in in vitro and in vivo tumorigenicity assays (soft agar, xenograft growth, tail vein metastasis). Quantitative proteomics was applied to identify proteins that are altered upon re-expression of KLK6 in MDA-MB-231 at normal or constitutive levels. Overexpression of KLK6 is associated with increased metastatic ability of breast cancer cells into lungs, increased expression of certain S100 proteins (S100A4, S100A11) and keratins (KRT), and downregulation of the apoptosis-related proteases CASP7 and CASP8, and RABs. On the other hand, KLK6 re-expression at physiological levels leads to inhibition of lung metastases associated with suppression of S100 proteins (S100A4, S100A10, S100A13, S100A16) and induced CASP7 and CASP8 expression. As this is the first report that KLK6 expression is associated with S100 proteins, caspases, RABs, and KRTs, we validated this finding in clinical datasets. By integrating proteomics and microarray data from breast cancer patients, we generated two composite scores, KLK6 + S100B-S100A7 and KLK6 + S100B-S100A14-S100A16, to predict long-term survival of breast cancer patients. We present previously unknown pathways implicating KLK6 in breast cancer. The findings promise to aid our understanding of the functional roles of KLK6 in breast cancer and may yield new biomarkers for the cancer types in which KLK6 is known to be aberrantly upregulated.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Calicreínas/metabolismo , Transdução de Sinais , Animais , Apoptose , Neoplasias da Mama/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos SCID , Proteínas de Neoplasias/metabolismo , Fenótipo , Proteínas S100/metabolismo , Análise de Sobrevida
9.
Exp Dermatol ; 28(1): 86-89, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30390391

RESUMO

The role of epidermal proteolysis in overdesquamation was revealed in Netherton syndrome, a rare ichthyosis due to genetic deficiency of the LEKTI inhibitor of serine proteases. Recently, we developed activography, a new histochemical method, to spatially localize and semiquantitatively assess proteolytic activities using activity-based probes. Activography provides specificity and versatility compared to in situ zymography, the only available method to determine enzymatic activities in tissue biopsies. Here, activography was validated in skin biopsies obtained from an array of distinct disorders and compared with in situ zymography. Activography provides a methodological advancement due to its simplicity and specificity and can be readily adapted as a routine diagnostic assay. Interestingly, the levels of epidermal proteolysis correlated with the degree of desquamation independent of skin pathology. Thus, deregulated epidermal proteolysis likely represents a universal mechanism underlying aberrant desquamation.


Assuntos
Histocitoquímica/métodos , Proteólise , Dermatopatias Genéticas/patologia , Dermatopatias Genéticas/fisiopatologia , Biópsia , Dermatite Seborreica/patologia , Dermatite Seborreica/fisiopatologia , Humanos , Pele/patologia , Dermatopatias/congênito , Dermatopatias/patologia , Dermatopatias/fisiopatologia , Dermatopatias Genéticas/metabolismo
10.
Carcinogenesis ; 39(12): 1529-1536, 2018 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-30137206

RESUMO

Kallikrein-related peptidase 6 (KLK6) is a serine protease that is aberrantly altered in various types of cancer, but its role in non-melanoma skin cancer has not been investigated. KLK6 is active in epidermis and has been linked to normal skin differentiation. Thus, we investigated whether it could be implicated in skin tumorigenesis in vivo. Carcinogenesis was induced in Klk6-/- mice by epidermal application of 7,12-dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol 13-acetate (DMBA/TPA), and multistage skin tumor development and progression was monitored closely until squamous cell carcinomas (SCCs) and invasive tumors formed. Klk6-/- (but also Klk6+/-) mice were highly resistant to tumor growth/development manifested by their highly diminished numbers and delayed onset of tumors compared with wild-type (wt) mice. Histological analyses of the few tumors that developed in Klk6-/- after prolonged (>1 year) chemical challenge revealed that these were mainly benign papillomas, whereas in wt mice tumors progressed to SCCs. Inflammation was attenuated in Klk6-/- skin following chronic exposure to TPA, indicated by markedly low expression of proinflammatory cytokines, in direct contrast to wt. Further, in Klk6-/- mice, the ability of implanted nascent PDVC57 skin cancer cells to form tumors was highly diminished. Our study identified KLK6 as a new tumor-promoting factor of early skin cancer and suggested that KLK6 is an important molecular link in the development of skin inflammation and in tumor-promoting inflammatory processes.


Assuntos
Calicreínas/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Pele/patologia , Animais , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Citocinas/genética , Progressão da Doença , Epiderme/patologia , Inflamação/genética , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Papiloma/genética , Papiloma/patologia
11.
Biol Chem ; 399(9): 1107-1111, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-29561728

RESUMO

Vaginal cancer is rare and largely unexplored. We found here that kallikrein-related peptidase 5 (KLK5) is coordinately expressed along with other KLKs in all stratified epithelia, including vagina, pointing to potential role(s) in differentiation. Further, we propose that KLK5 could be implicated in vaginal cancer development based on the fact that Klk5-/- mice are prone to develop vaginal tumors when exposed to 7,12-dimethylbenz[a]anthracene. Nf-κb activation is markedly enhanced in Klk5-/-, leading to increased resistance to apoptosis of mutated vaginal cells. This explains the higher tumor numbers observed in Klk5-/- compared to wildtype. Thus, KLK5 may represent a putative suppressor of vaginal cancer.


Assuntos
Carcinogênese , Calicreínas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Neoplasias Vaginais/metabolismo , Neoplasias Vaginais/patologia , 9,10-Dimetil-1,2-benzantraceno , Animais , Apoptose , Feminino , Humanos , Calicreínas/deficiência , Calicreínas/genética , Camundongos , Camundongos Knockout , Mutação , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Neoplasias Vaginais/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA