Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(8): e2205803, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36670068

RESUMO

Cold atmospheric plasma (CAP) is a partially ionized gas that gains attention as a well-tolerated cancer treatment that can enhance anti-tumor immune responses, which are important for durable therapeutic effects. This review offers a comprehensive and critical summary on the current understanding of mechanisms in which CAP can assist anti-tumor immunity: induction of immunogenic cell death, oxidative post-translational modifications of the tumor and its microenvironment, epigenetic regulation of aberrant gene expression, and enhancement of immune cell functions. This should provide a rationale for the effective and meaningful clinical implementation of CAP. As discussed here, despite its potential, CAP faces different clinical limitations associated with the current CAP treatment modalities: direct exposure of cancerous cells to plasma, and indirect treatment through injection of plasma-treated liquids in the tumor. To this end, a novel modality is proposed: plasma-treated hydrogels (PTHs) that can not only help overcome some of the clinical limitations but also offer a convenient platform for combining CAP with existing drugs to improve therapeutic responses and contribute to the clinical translation of CAP. Finally, by integrating expertise in biomaterials and plasma medicine, practical considerations and prospective for the development of PTHs are offered.


Assuntos
Neoplasias , Gases em Plasma , Humanos , Gases em Plasma/uso terapêutico , Epigênese Genética , Estudos Prospectivos , Neoplasias/tratamento farmacológico , Sobrevivência Celular , Microambiente Tumoral
2.
Nat Cell Biol ; 23(6): 652-663, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34083785

RESUMO

Expression of exon-specific isoforms from alternatively spliced mRNA is a fundamental mechanism that substantially expands the proteome of a cell. However, conventional methods to assess alternative splicing are either consumptive and work-intensive or do not quantify isoform expression longitudinally at the protein level. Here, we therefore developed an exon-specific isoform expression reporter system (EXSISERS), which non-invasively reports the translation of exon-containing isoforms of endogenous genes by scarlessly excising reporter proteins from the nascent polypeptide chain through highly efficient, intein-mediated protein splicing. We applied EXSISERS to quantify the inclusion of the disease-associated exon 10 in microtubule-associated protein tau (MAPT) in patient-derived induced pluripotent stem cells and screened Cas13-based RNA-targeting effectors for isoform specificity. We also coupled cell survival to the inclusion of exon 18b of FOXP1, which is involved in maintaining pluripotency of embryonic stem cells, and confirmed that MBNL1 is a dominant factor for exon 18b exclusion. EXSISERS enables non-disruptive and multimodal monitoring of exon-specific isoform expression with high sensitivity and cellular resolution, and empowers high-throughput screening of exon-specific therapeutic interventions.


Assuntos
Processamento Alternativo , Fatores de Transcrição Forkhead/metabolismo , Ensaios de Triagem em Larga Escala , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteômica , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Proteínas tau/metabolismo , Sistemas CRISPR-Cas , Éxons , Fatores de Transcrição Forkhead/genética , Células HEK293 , Humanos , Isoformas de Proteínas , Proteoma , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Análise de Célula Única , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA